Search results
Results from the WOW.Com Content Network
The mass and volume of a displaced amount of gas are determined: At atmospheric pressure , the gas collecting tube is filled with the gas to be investigated and the overall mass is measured. Then the aspirator sucks out much of the gas yielding a second overall mass m s u c k e d {\displaystyle m_{sucked}} measurement.
Four items are required for gas collection with a pneumatic trough: [2] The trough itself, which is a large glass dish or a similar container. A gas bottle (or bulb), to hold the gas collected. A way to support the gas bottle or bulb, such as a beehive shelf or a hanger (as with Stephen Hales' design). A liquid in the trough.
In fluid mechanics, displacement occurs when an object is largely immersed in a fluid, pushing it out of the way and taking its place. The volume of the fluid displaced can then be measured, and from this, the volume of the immersed object can be deduced: the volume of the immersed object will be exactly equal to the volume of the displaced fluid.
Similarly, a eudiometer uses water to release gas into the eudiometer tube, converting the gas into a visible, measurable amount. A correct measurement of the pressure when performing these experiments is crucial for the calculations involved in the PV=nRT equation, because the pressure could change the density of the gas. [10]
Cyclonic separation is a method of removing particulates from an air, gas or liquid stream, without the use of filters, through vortex separation. When removing particulate matter from liquid, a hydrocyclone is used; while from gas, a gas cyclone is used. Rotational effects and gravity are used to separate mixtures of solids and fluids. The ...
A gas pycnometer is a laboratory device used for measuring the density—or, more accurately, the volume—of solids, be they regularly shaped, porous or non-porous, monolithic, powdered, granular or in some way comminuted, employing some method of gas displacement and the volume:pressure relationship known as Boyle's law.
AOL Mail welcomes Verizon customers to our safe and delightful email experience!
In fluid dynamics, the Buckley–Leverett equation is a conservation equation used to model two-phase flow in porous media. [1] The Buckley–Leverett equation or the Buckley–Leverett displacement describes an immiscible displacement process, such as the displacement of oil by water, in a one-dimensional or quasi-one-dimensional reservoir.