Search results
Results from the WOW.Com Content Network
In chemistry, a hydration reaction is a chemical reaction in which a substance combines with water. In organic chemistry, water is added to an unsaturated substrate, which is usually an alkene or an alkyne. This type of reaction is employed industrially to produce ethanol, isopropanol, and butan-2-ol. [1]
Hexa(tert-butoxy)ditungsten(III) and Hexa(tert-butoxy)dimolybdenum(III) are well known examples, in which the metal-metal bond distance is about 233 pm. [6] Hexa(tert-butoxy)ditungsten(III) has attracted particular attention for its reactions with alkynes, leading to metal-carbon triple bonded compounds of the formula RC≡W(OBut) 3 [7]
3-Hexyne is the organic compound with the formula C 2 H 5 CCC 2 H 5. This colorless liquid is one of three isomeric hexynes. 3-Hexyne forms with 5-decyne, 4-octyne, and 2-butyne a series of symmetric alkynes. It is a reagent in organometallic chemistry. [1] Structure of the coordination complex NbCl 3 (dimethoxyethane)(3-hexyne). [2]
This can be achieved using either acid catalysts like Amberlyst, or Lewis acids like aluminium. [3] On a laboratory scale the Friedel–Crafts reaction uses alkyl halides, as these are often easier to handle than their corresponding alkenes, which tend to be gasses. The reaction is catalysed by aluminium trichloride. This approach is rarely ...
A 3D model of ethyne (), the simplest alkyneIn organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. [1] The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula C n H 2n−2.
Due to the activated nature of the cyclic carbon–carbon triple bond, many alkyne addition-type reactions such as the Diels–Alder, 1,3-dipolar cycloadditions and halogenation may be performed using very mild conditions and in the absence of the catalysts frequently required to accelerate the transformation in a non-cyclic system. In addition ...
In the following reaction (scheme 1), the alkyne proton of ethyl propiolate is deprotonated by n-butyllithium at -78 °C to form lithium ethyl propiolate to which cyclopentanone is added forming a lithium alkoxide. Acetic acid is added to remove lithium and liberate the free alcohol. [6] Scheme 1.
Meyer-Schuster Rearrangement. The reaction mechanism [5] begins with the protonation of the alcohol which leaves in an E1 reaction to form the allene from the alkyne.Attack of a water molecule on the carbocation and deprotonation is followed by tautomerization to give the α,β-unsaturated carbonyl compound.