Search results
Results from the WOW.Com Content Network
The Eschweiler–Clarke reaction (also called the Eschweiler–Clarke methylation) is a chemical reaction whereby a primary (or secondary) amine is methylated using excess formic acid and formaldehyde. [1] [2] Reductive amination reactions such as this one will not produce quaternary ammonium salts, but instead will stop at the tertiary amine ...
In organic chemistry, the Mannich reaction is a three-component organic reaction that involves the amino alkylation of an acidic proton next to a carbonyl (C=O) functional group by formaldehyde (H−CHO) and a primary or secondary amine (−NH 2) or ammonia (NH 3). [1] The final product is a β-amino-carbonyl compound also known as a Mannich base.
The reaction mechanism [2] begins with an imine condensation of a primary aromatic amine and formaldehyde. Once the imine is produced, it reacts with phenol in the presence of water to yield an α-aminobenzylphenol. An electron pushing mechanism for the Betti Reaction.
In this method, the sodium or potassium salt of phthalimide is N-alkylated with a primary alkyl halide to give the corresponding N-alkylphthalimide. [8] [9] [10] Upon workup by acidic hydrolysis the primary amine is liberated as the amine salt. [11] Alternatively the workup may be via the Ing–Manske procedure, involving reaction with hydrazine.
For example, reaction of 1-bromooctane with ammonia yields almost equal amounts of the primary amine and the secondary amine. [3] Therefore, for laboratory purposes, N-alkylation is often limited to the synthesis of tertiary amines. An exception is the amination of alpha-halo carboxylic acids that do permit synthesis of primary amines with ...
The Hofmann rearrangement (Hofmann degradation) is the organic reaction of a primary amide to a primary amine with one less carbon atom. [1] [2] [3] The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate.
With secondary amines and not primary amines the Zincke reaction takes on a different shape forming so-called Zincke aldehydes in which the pyridine ring is ring-opened with the terminal iminium group hydrolyzed to an aldehyde: [4] Zincke aldehydes. This variation has been applied in the synthesis of novel indoles: [11] Zincke aldehydes Kearney ...
The reaction mechanism for this reaction has been demonstrated to proceed through steps similar to those known for palladium catalyzed CC coupling reactions. Steps include oxidative addition of the aryl halide to a Pd(0) species, addition of the amine to the oxidative addition complex, deprotonation followed by reductive elimination.