enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    Chemist Linus Pauling first developed the hybridisation theory in 1931 to explain the structure of simple molecules such as methane (CH 4) using atomic orbitals. [2] Pauling pointed out that a carbon atom forms four bonds by using one s and three p orbitals, so that "it might be inferred" that a carbon atom would form three bonds at right angles (using p orbitals) and a fourth weaker bond ...

  3. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    This table shows the real hydrogen-like wave functions for all atomic orbitals up to 7s, and therefore covers the occupied orbitals in the ground state of all elements in the periodic table up to radium and some beyond. "ψ" graphs are shown with − and + wave function phases shown in two different colors (arbitrarily red and blue).

  4. Hückel method - Wikipedia

    en.wikipedia.org/wiki/Hückel_method

    However, the orbitals formed by σ electrons are ignored and assumed not to interact with π electrons. This is referred to as σ-π separability. It is justified by the orthogonality of σ and π orbitals in planar molecules. For this reason, the Hückel method is limited to systems that are planar or nearly so.

  5. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    The hybrid can certainly be normalized, as it is the sum of two normalized wavefunctions. Orthogonality must be established so that the two hybrid orbitals can be involved in separate covalent bonds. The inner product of orthogonal orbitals must be zero and computing the inner product of the constructed hybrids gives the following calculation.

  6. Isovalent hybridization - Wikipedia

    en.wikipedia.org/wiki/Isovalent_hybridization

    In chemistry, isovalent or second order hybridization is an extension of orbital hybridization, the mixing of atomic orbitals into hybrid orbitals which can form chemical bonds, to include fractional numbers of atomic orbitals of each type (s, p, d). It allows for a quantitative depiction of bond formation when the molecular geometry deviates ...

  7. Natural bond orbital - Wikipedia

    en.wikipedia.org/wiki/Natural_bond_orbital

    In quantum chemistry, a natural bond orbital or NBO is a calculated bonding orbital with maximum electron density.The NBOs are one of a sequence of natural localized orbital sets that include "natural atomic orbitals" (NAO), "natural hybrid orbitals" (NHO), "natural bonding orbitals" (NBO) and "natural (semi-)localized molecular orbitals" (NLMO).

  8. Lone pair - Wikipedia

    en.wikipedia.org/wiki/Lone_pair

    Both models are of value and represent the same total electron density, with the orbitals related by a unitary transformation. In this case, we can construct the two equivalent lone pair hybrid orbitals h and h' by taking linear combinations h = c 1 σ(out) + c 2 p and h' = c 1 σ(out) – c 2 p for an appropriate choice of coefficients c 1 and ...

  9. Localized molecular orbitals - Wikipedia

    en.wikipedia.org/wiki/Localized_molecular_orbitals

    Localized molecular orbitals are molecular orbitals which are concentrated in a limited spatial region of a molecule, such as a specific bond or lone pair on a specific atom. They can be used to relate molecular orbital calculations to simple bonding theories, and also to speed up post-Hartree–Fock electronic structure calculations by taking ...