Ads
related to: what is a quotient math meaning in algebraIt’s an amazing resource for teachers & homeschoolers - Teaching Mama
- Guided Lessons
Learn new concepts step-by-step
with colorful guided lessons.
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Interactive Stories
Enchant young learners with
animated, educational stories.
- 20,000+ Worksheets
Browse by grade or topic to find
the perfect printable worksheet.
- Guided Lessons
Search results
Results from the WOW.Com Content Network
A rational number can be defined as the quotient of two integers (as long as the denominator is non-zero). A more detailed definition goes as follows: [10] A real number r is rational, if and only if it can be expressed as a quotient of two integers with a nonzero denominator. A real number that is not rational is irrational.
In mathematics, a quotient algebra is the result of partitioning the elements of an algebraic structure using a congruence relation. Quotient algebras are also called factor algebras . Here, the congruence relation must be an equivalence relation that is additionally compatible with all the operations of the algebra, in the formal sense ...
The division with remainder or Euclidean division of two natural numbers provides an integer quotient, which is the number of times the second number is completely contained in the first number, and a remainder, which is the part of the first number that remains, when in the course of computing the quotient, no further full chunk of the size of ...
The quotient group is the same idea, although one ends up with a group for a final answer instead of a number because groups have more structure than an arbitrary collection of objects: in the quotient / , the group structure is used to form a natural "regrouping".
In abstract algebra, congruence relations on the underlying set of an algebra allow the algebra to induce an algebra on the equivalence classes of the relation, called a quotient algebra. In linear algebra, a quotient space is a vector space formed by taking a quotient group, where the quotient homomorphism is a linear map.
For a given congruence ~ on A, the set A / ~ of equivalence classes can be given the structure of an algebra in a natural fashion, the quotient algebra. The function that maps every element of A to its equivalence class is a homomorphism, and the kernel of this homomorphism is ~. The lattice Con(A) of all congruence relations on an algebra A is ...
In mathematics, a simple group is a nontrivial group whose only normal subgroups are the trivial group and the group itself. A group that is not simple can be broken into two smaller groups, namely a nontrivial normal subgroup and the corresponding quotient group.
The first isomorphism theorem in general universal algebra states that this quotient algebra is naturally isomorphic to the image of f (which is a subalgebra of B). Note that the definition of kernel here (as in the monoid example) doesn't depend on the algebraic structure; it is a purely set-theoretic concept.
Ads
related to: what is a quotient math meaning in algebraIt’s an amazing resource for teachers & homeschoolers - Teaching Mama