Ad
related to: turbulent flow in pipes
Search results
Results from the WOW.Com Content Network
The behavior of pipe flow is governed mainly by the effects of viscosity and gravity relative to the inertial forces of the flow. Depending on the effect of viscosity relative to inertia, as represented by the Reynolds number, the flow can be either laminar or turbulent.
In laminar flow, friction loss arises from the transfer of momentum from the fluid in the center of the flow to the pipe wall via the viscosity of the fluid; no vortices are present in the flow. Note that the friction loss is insensitive to the pipe roughness height ε: the flow velocity in the neighborhood of the pipe wall is zero.
However, in some conditions turbulent flow can be audible due to other reasons, some of them pathological. For example, in advanced atherosclerosis, bruits (and therefore turbulent flow) can be heard in some vessels that have been narrowed by the disease process. Recently, turbulence in porous media became a highly debated subject. [13]
For flow in a pipe of diameter D, experimental observations show that for "fully developed" flow, [n 2] laminar flow occurs when Re D < 2300 and turbulent flow occurs when Re D > 2900. [13] [14] At the lower end of this range, a continuous turbulent-flow will form, but only at a very long distance from the inlet of the pipe. The flow in between ...
The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...
A turbulent flow in a fluid is defined by the critical Reynolds number, for a closed pipe this works out to approximately R e c ≈ 2000. {\displaystyle \mathrm {Re} _{\text{c}}\approx 2000.} In terms of the critical Reynolds number, the critical velocity is represented as
Reynolds’ 1883 experiment on fluid dynamics in pipes Reynolds’ 1883 observations of the nature of the flow in his experiments. In 1883 Osborne Reynolds demonstrated the transition to turbulent flow in a classic experiment in which he examined the behaviour of water flow under different flow rates using a small jet of dyed water introduced into the centre of flow in a larger pipe.
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
Ad
related to: turbulent flow in pipes