Search results
Results from the WOW.Com Content Network
In enzymology, an amidase (EC 3.5.1.4, acylamidase, acylase (misleading), amidohydrolase (ambiguous), deaminase (ambiguous), fatty acylamidase, N-acetylaminohydrolase (ambiguous)) is an enzyme that catalyzes the hydrolysis of an amide. In this way, the two substrates of this enzyme are an amide and H 2 O, whereas its two products are ...
Mechanism for acid-mediated hydrolysis of an amide. [11] ... For N,N-diaryl amides. The reaction mechanism is based on a nucleophilic aromatic substitution. [26]
Mechanism for acid-catalyzed hydrolysis of an amide. Upon hydrolysis, an amide converts into a carboxylic acid and an amine or ammonia (which in the presence of acid are immediately converted to ammonium salts). One of the two oxygen groups on the carboxylic acid are derived from a water molecule and the amine (or ammonia) gains the hydrogen ion.
Researchers have since conducted increasingly detailed investigations of the triad's exact catalytic mechanism. Of particular contention in the 1990s and 2000s was whether low-barrier hydrogen bonding contributed to catalysis, [18] [19] [20] or whether ordinary hydrogen bonding is sufficient to explain the mechanism.
Weermann degradation mechanism of Hydroxy-Carbonsäureamide. At first the carbonic acid amide (1) reacts with the sodium hypochlorite. After the separation of water and chloride an amine with a free bond is built 2. The intermediate (3) is generated by rearrangement. In the next step a hydrolysis takes place.
Nitrile hydratase and amidase are two hydrating and hydrolytic enzymes responsible for the sequential metabolism of nitriles in bacteria that are capable of utilising nitriles as their sole source of nitrogen and carbon, and in concert act as an alternative to nitrilase activity, which performs nitrile hydrolysis without formation of an intermediate primary amide.
The formation of an amide using a carbodiimide is a common reaction, but carries the risk of several side reactions. The acid 1 will react with the carbodiimide to produce the key intermediate: the O-acylisourea 2 , which can be viewed as a carboxylic ester with an activated leaving group.
The initial product is a thioamide for example that of acetophenone [7] which can again be hydrolyzed to the amide. The reaction is named after Karl Kindler The Kindler modification of the Willgerodt rearrangement. A possible reaction mechanism for the Kindler variation is depicted below: [8] The likely reaction mechanism for the Kindler ...