Search results
Results from the WOW.Com Content Network
Ti-6Al-4V (UNS designation R56400), also sometimes called TC4, Ti64, [1] or ASTM Grade 5, is an alpha-beta titanium alloy with a high specific strength and excellent corrosion resistance.
Titanium's durability, light weight, and dent and corrosion resistance make it useful for watch cases. [115] Some artists work with titanium to produce sculptures, decorative objects and furniture. [123] Titanium may be anodized to vary the thickness of the surface oxide layer, causing optical interference fringes and a variety of bright colors ...
Titanium alloy in ingot form. Titanium alloys are alloys that contain a mixture of titanium and other chemical elements. Such alloys have very high tensile strength and toughness (even at extreme temperatures). They are light in weight, have extraordinary corrosion resistance and the ability to withstand
Toggle the table of contents. ... ; high corrosion resistance, used in marine applications in ... Nimonic (chromium, cobalt, titanium), used in jet engine ...
Ti―6Al―7Nb is one of the titanium alloys that built of hexagonal α phase (stabilised with aluminium) and regular body-centred phase β (stabilised with niobium). The alloy is characterized by added advantageous mechanical properties, it has higher corrosion resistance and biotolerance in relation to Ti-6Al-4V alloys. [2] [3] [4]
Titanium is considered the most biocompatible metal due to its resistance to corrosion from bodily fluids, bio-inertness, capacity for osseointegration, and high fatigue limit. Titanium's ability to withstand the harsh bodily environment is a result of the protective oxide film that forms naturally in the presence of oxygen.
Titanium aluminide (chemical formula TiAl), commonly gamma titanium, is an intermetallic chemical compound. It is lightweight and resistant to oxidation [1] and heat, but has low ductility. The density of γ-TiAl is about 4.0 g/cm 3. It finds use in several applications including aircraft, jet engines, sporting equipment and automobiles.
Such alloys promise improvements on high-temperature applications, strength-to-weight, fracture toughness, corrosion and radiation resistance, wear resistance, and others. They reported ratio of hardness and density of 1.8–2.6 GPa-cm 3 /g, which surpasses all known alloys, including intermetallic compounds, titanium aluminides, refractory ...