Search results
Results from the WOW.Com Content Network
To reduce the concentration of Pu-240 in the plutonium produced, weapons program plutonium production reactors (e.g. B Reactor) irradiate the uranium for a far shorter time than is normal for a nuclear power reactor. More precisely, weapons-grade plutonium is obtained from uranium irradiated to a low burnup.
A small percentage of plutonium-239 can be deliberately added to fresh nuclear fuel. Such fuel is called MOX (mixed oxide) fuel, as it contains a mixture of uranium dioxide (UO 2) and plutonium dioxide (PuO 2). The addition of plutonium-239 reduces the need to enrich the uranium in the fuel.
Infrared absorption spectra of the two UF 6 isotopes at 300 and 80 K. Schematic of a stage of an isotope separation plant for uranium enrichment with laser. An infrared laser with a wavelength of approx. 16 μm radiates at a high repetition rate onto a UF6 carrier gas mixture, which flows supersonically out of a laval nozzle.
U will inevitably be enriched slightly stronger than 235 U, which is a negligible effect in a once-through fuel cycle due to the low (55 ppm) share of 234 U in natural uranium but can become relevant after successive passes through an enrichment-burnup-reprocessing-enrichment cycle, depending on enrichment and burnup characteristics. 234
The two fissile materials used in nuclear weapons are: 235 U, also known as highly enriched uranium (HEU), "oralloy" meaning "Oak Ridge alloy", [12] or "25" (a combination of the last digit of the atomic number of uranium-235, which is 92, and the last digit of its mass number, which is 235); and 239 Pu, also known as plutonium-239, or "49 ...
Plutonium-based weapons use plutonium produced in a nuclear reactor, which must be operated in such a way as to produce plutonium already of suitable isotopic mix or grade. While chemical elements can be purified through chemical processes , isotopes of the same element have nearly identical chemical properties which makes this type of ...
Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235 U) has been increased through the process of isotope separation.Naturally occurring uranium is composed of three major isotopes: uranium-238 (238 U with 99.2732–99.2752% natural abundance), uranium-235 (235 U, 0.7198–0.7210%), and uranium-234 (234 U, 0.0049–0.0059%).
The plutonium was again re-precipitated using a bismuth phosphate carrier and a combination of lanthanum salts and fluoride added, forming a solid lanthanum fluoride carrier for the plutonium. Addition of an alkali produced an oxide. The combined lanthanum plutonium oxide was collected and extracted with nitric acid to form plutonium nitrate. [30]