enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Center of pressure (fluid mechanics) - Wikipedia

    en.wikipedia.org/wiki/Center_of_pressure_(fluid...

    The total force vector acting at the center of pressure is the surface integral of the pressure vector field across the surface of the body. The resultant force and center of pressure location produce an equivalent force and moment on the body as the original pressure field. Pressure fields occur in both static and dynamic fluid mechanics ...

  3. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    Then the angular equation in the momentum equations and the continuity equation are identically satisfied. The radial momentum equation reduces to ⁠ ∂p / ∂r ⁠ = 0, i.e., the pressure p is a function of the axial coordinate x only. For brevity, use u instead of . The axial momentum equation reduces to

  4. Pressure prism - Wikipedia

    en.wikipedia.org/wiki/Pressure_prism

    HCOP = ∫px x dx / ∫px dx, where px is the pressure at x distance from the bottom With this formula we see the height of the COP for a plane surface is H/3 from the bottom, as shown in Figure 2 (left). With two fluids of differing density in a volume, the slope of the pressure prism will not be constant over the depth. See Figure 3 (right).

  5. Pressure-correction method - Wikipedia

    en.wikipedia.org/wiki/Pressure-correction_method

    The pressure value that is attempted to compute, is such that when plugged into momentum equations a divergence-free velocity field results. The mass imbalance is often also used for control of the outer loop. The name of this class of methods stems from the fact that the correction of the velocity field is computed through the pressure-field.

  6. Pressure coefficient - Wikipedia

    en.wikipedia.org/wiki/Pressure_coefficient

    In fluid dynamics, the pressure coefficient is a dimensionless number which describes the relative pressures throughout a flow field. The pressure coefficient is used in aerodynamics and hydrodynamics. Every point in a fluid flow field has its own unique pressure coefficient, C p.

  7. Thermal equation of state of solids - Wikipedia

    en.wikipedia.org/wiki/Thermal_equation_of_state...

    At ambient pressure, P=0 GPA is known, so, the volume, pressure, and temperature are all given. Then, authors [9] predict the pressure value from the given (V, T) from pressure-dependent thermal expansion equation of state. The predicted pressures match with the known experimental value of 0 GPa, see in Figure 2.

  8. Rayleigh–Plesset equation - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Plesset_equation

    Neglecting surface tension and viscosity, the equation was first derived by W. H. Besant in his 1859 book with the problem statement stated as An infinite mass of homogeneous incompressible fluid acted upon by no forces is at rest, and a spherical portion of the fluid is suddenly annihilated; it is required to find the instantaneous alteration of pressure at any point of the mass, and the time ...

  9. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...