enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unsupervised learning - Wikipedia

    en.wikipedia.org/wiki/Unsupervised_learning

    Unsupervised learning is a framework in machine learning where, in contrast to supervised learning, algorithms learn patterns exclusively from unlabeled data. [1] Other frameworks in the spectrum of supervisions include weak- or semi-supervision , where a small portion of the data is tagged, and self-supervision .

  3. Generalized Hebbian algorithm - Wikipedia

    en.wikipedia.org/wiki/Generalized_Hebbian_algorithm

    The generalized Hebbian algorithm is an iterative algorithm to find the highest principal component vectors, in an algorithmic form that resembles unsupervised Hebbian learning in neural networks. Consider a one-layered neural network with n {\displaystyle n} input neurons and m {\displaystyle m} output neurons y 1 , … , y m {\displaystyle y ...

  4. Linear classifier - Wikipedia

    en.wikipedia.org/wiki/Linear_classifier

    However, its name makes sense when we compare LDA to the other main linear dimensionality reduction algorithm: principal components analysis (PCA). LDA is a supervised learning algorithm that utilizes the labels of the data, while PCA is an unsupervised learning algorithm that ignores the labels. To summarize, the name is a historical artifact.

  5. Pattern recognition - Wikipedia

    en.wikipedia.org/wiki/Pattern_recognition

    Algorithms for pattern recognition depend on the type of label output, on whether learning is supervised or unsupervised, and on whether the algorithm is statistical or non-statistical in nature. Statistical algorithms can further be categorized as generative or discriminative .

  6. Competitive learning - Wikipedia

    en.wikipedia.org/wiki/Competitive_learning

    Competitive learning is a form of unsupervised learning in artificial neural networks, in which nodes compete for the right to respond to a subset of the input data. [ 1 ] [ 2 ] A variant of Hebbian learning , competitive learning works by increasing the specialization of each node in the network.

  7. Conceptual clustering - Wikipedia

    en.wikipedia.org/wiki/Conceptual_clustering

    For example, we might permit only concepts wherein at least one probability differs from 0.5 by more than . Under this constraint, with α = 0.3 {\displaystyle \alpha =0.3} , a concept such as [.6 .5 .7] could not be constructed by the learner; however a concept such as [.6 .5 .9] would be accessible because at least one probability differs ...

  8. Category:Unsupervised learning - Wikipedia

    en.wikipedia.org/wiki/Category:Unsupervised_learning

    Pages in category "Unsupervised learning" The following 27 pages are in this category, out of 27 total. This list may not reflect recent changes. ...

  9. Weak supervision - Wikipedia

    en.wikipedia.org/wiki/Weak_supervision

    First a supervised learning algorithm is trained based on the labeled data only. This classifier is then applied to the unlabeled data to generate more labeled examples as input for the supervised learning algorithm. Generally only the labels the classifier is most confident in are added at each step. [15]