enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear span - Wikipedia

    en.wikipedia.org/wiki/Linear_span

    In mathematics, the linear span (also called the linear hull [1] or just span) of a set of elements of a vector space is the smallest linear subspace of that contains . It is the set of all finite linear combinations of the elements of S , [ 2 ] and the intersection of all linear subspaces that contain S . {\displaystyle S.}

  3. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    Linear span Given a subset G of a vector space V, the linear span or simply the span of G is the smallest linear subspace of V that contains G, in the sense that it is the intersection of all linear subspaces that contain G. The span of G is also the set of all linear combinations of elements of G.

  4. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The row space of this matrix is the vector space spanned by the row vectors. The column vectors of a matrix. The column space of this matrix is the vector space spanned by the column vectors. In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column ...

  5. Linear subspace - Wikipedia

    en.wikipedia.org/wiki/Linear_subspace

    If V is a vector space over a field K, a subset W of V is a linear subspace of V if it is a vector space over K for the operations of V.Equivalently, a linear subspace of V is a nonempty subset W such that, whenever w 1, w 2 are elements of W and α, β are elements of K, it follows that αw 1 + βw 2 is in W.

  6. Linear combination - Wikipedia

    en.wikipedia.org/wiki/Linear_combination

    Take an arbitrary field K, an arbitrary vector space V, and let v 1,...,v n be vectors (in V). It is interesting to consider the set of all linear combinations of these vectors. This set is called the linear span (or just span) of the vectors, say S = {v 1, ..., v n}. We write the span of S as span(S) [5] [6] or sp(S):

  7. Affine combination - Wikipedia

    en.wikipedia.org/wiki/Affine_combination

    This concept is fundamental in Euclidean geometry and affine geometry, because the set of all affine combinations of a set of points forms the smallest affine space containing the points, exactly as the linear combinations of a set of vectors form their linear span. The affine combinations commute with any affine transformation T in the sense that

  8. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    A linear form is a linear map from a vector space V over a field F to the field of scalars F, viewed as a vector space over itself. Equipped by pointwise addition and multiplication by a scalar, the linear forms form a vector space, called the dual space of V, and usually denoted V* [17] or V ′. [18] [19]

  9. Glossary of linear algebra - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_linear_algebra

    This glossary of linear algebra is a list of definitions and terms relevant to the field of linear algebra, the branch of mathematics concerned with linear equations and their representations as vector spaces. For a glossary related to the generalization of vector spaces through modules, see glossary of module theory