Search results
Results from the WOW.Com Content Network
An acute triangle (or acute-angled triangle) is a triangle with three acute angles (less than 90°). An obtuse triangle (or obtuse-angled triangle) is a triangle with one obtuse angle (greater than 90°) and two acute angles. Since a triangle's angles must sum to 180° in Euclidean geometry, no Euclidean triangle can have more than one obtuse ...
Obtuse case. Figure 7b cuts a hexagon in two different ways into smaller pieces, yielding a proof of the law of cosines in the case that the angle γ is obtuse. We have in pink, the areas a 2, b 2, and −2ab cos γ on the left and c 2 on the right; in blue, the triangle ABC twice, on the left, as well as on the right.
Lambert quadrilateral fundamental domain in orbifold *p222 *3222 symmetry with 60-degree angle on one of its corners. *4222 symmetry with 45-degree angle on one of its corners. The limiting Lambert quadrilateral has three right angles, and one 0-degree angle with an ideal vertex at infinity, defining orbifold *∞222 symmetry.
Since no triangle can have two obtuse angles, γ is an acute angle and the solution γ = arcsin D is unique. If b < c, the angle γ may be acute: γ = arcsin D or obtuse: γ ′ = 180° − γ. The figure on right shows the point C, the side b and the angle γ as the first solution, and the point C ′, side b ′ and the angle γ ′ as the ...
The summit angles of a Saccheri quadrilateral are acute if the geometry is hyperbolic, right angles if the geometry is Euclidean and obtuse angles if the geometry is elliptic. The sum of the measures of the angles of any triangle is less than 180° if the geometry is hyperbolic, equal to 180° if the geometry is Euclidean, and greater than 180 ...
An angle larger than a right angle and smaller than a straight angle (between 90° and 180°) is called an obtuse angle [6] ("obtuse" meaning "blunt"). An angle equal to 1 / 2 turn (180° or π radians) is called a straight angle. [5] An angle larger than a straight angle but less than 1 turn (between 180° and 360°) is called a reflex ...
The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, = = =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.