enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Emission spectrum - Wikipedia

    en.wikipedia.org/wiki/Emission_spectrum

    The emission spectrum can be used to determine the composition of a material, since it is different for each element of the periodic table. One example is astronomical spectroscopy: identifying the composition of stars by analysing the received light. The emission spectrum characteristics of some elements are plainly visible to the naked eye ...

  3. Spectral line - Wikipedia

    en.wikipedia.org/wiki/Spectral_line

    A spectral line may be observed either as an emission line or an absorption line. Which type of line is observed depends on the type of material and its temperature relative to another emission source. An absorption line is produced when photons from a hot, broad spectrum source pass through a cooler material.

  4. Fraunhofer lines - Wikipedia

    en.wikipedia.org/wiki/Fraunhofer_lines

    About 45 years later, Gustav Kirchhoff and Robert Bunsen [7] noticed that several Fraunhofer lines coincide with characteristic emission lines identified in the spectra of heated chemical elements. [8] They inferred that dark lines in the solar spectrum are caused by absorption by chemical elements in the solar atmosphere. [9]

  5. Hydrogen spectral series - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_spectral_series

    The four visible hydrogen emission spectrum lines in the Balmer series. H-alpha is the red line at the right. The Balmer series includes the lines due to transitions from an outer orbit n > 2 to the orbit n' = 2. Named after Johann Balmer, who discovered the Balmer formula, an empirical equation to predict the Balmer series, in 1885.

  6. Balmer series - Wikipedia

    en.wikipedia.org/wiki/Balmer_series

    The "visible" hydrogen emission spectrum lines in the Balmer series. H-alpha is the red line at the right. Four lines (counting from the right) are formally in the visible range. Lines five and six can be seen with the naked eye, but are considered to be ultraviolet as they have wavelengths less than 400 nm.

  7. Atomic emission spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Atomic_emission_spectroscopy

    Each element has its own unique spectral line due to the fact that each element has a different atomic arrangement, so this method is an important tool for identifying the makeup of materials. Robert Bunsen and Gustav Kirchhoff were the first to establish atomic emission spectroscopy as a tool in chemistry. [1]

  8. Sharp series - Wikipedia

    en.wikipedia.org/wiki/Sharp_series

    The sharp series is a series of spectral lines in the atomic emission spectrum caused when electrons descend from higher-energy s orbitals of an atom to the lowest available p orbital. The spectral lines include some in the visible light, and they extend into the ultraviolet.

  9. Lyman series - Wikipedia

    en.wikipedia.org/wiki/Lyman_series

    The spectrum of radiation emitted by hydrogen is non-continuous or discrete. Here is an illustration of the first series of hydrogen emission lines: The Lyman series. Historically, explaining the nature of the hydrogen spectrum was a considerable problem in physics.