Search results
Results from the WOW.Com Content Network
A maximum matching (also known as maximum-cardinality matching [2]) is a matching that contains the largest possible number of edges. There may be many maximum matchings. The matching number of a graph G is the size of a maximum matching. Every maximum matching is maximal, but not every maximal matching is a maximum matching.
Maximum cardinality matching is a fundamental problem in graph theory. [1] We are given a graph G, and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset. As each edge will cover exactly two vertices, this ...
In computer science and graph theory, the maximum weight matching problem is the problem of finding, in a weighted graph, a matching in which the sum of weights is maximized. A special case of it is the assignment problem , in which the input is restricted to be a bipartite graph , and the matching constrained to be have cardinality that of the ...
The matching problem can be generalized by assigning weights to edges in G and asking for a set M that produces a matching of maximum (minimum) total weight: this is the maximum weight matching problem. This problem can be solved by a combinatorial algorithm that uses the unweighted Edmonds's algorithm as a subroutine. [6]
In computer science, the Hopcroft–Karp algorithm (sometimes more accurately called the Hopcroft–Karp–Karzanov algorithm) [1] is an algorithm that takes a bipartite graph as input and produces a maximum-cardinality matching as output — a set of as many edges as possible with the property that no two edges share an endpoint.
A matching in a graph is a set of edges no two of which share an endpoint, and a matching is maximum if no other matching has more edges. [2] It is obvious from the definition that any vertex-cover set must be at least as large as any matching set (since for every edge in the matching, at least one vertex is needed in the cover).
A matching in G is a subset M of E, such that each vertex in V is adjacent to at most a single edge in M. A maximum matching is a matching of maximum cardinality. An edge e in E is called maximally matchable (or allowed) if there exists a maximum matching M that contains e.
Every perfect matching is a maximum-cardinality matching, but the opposite is not true. For example, consider the following graphs: [1] In graph (b) there is a perfect matching (of size 3) since all 6 vertices are matched; in graphs (a) and (c) there is a maximum-cardinality matching (of size 2) which is not perfect, since some vertices are ...