Search results
Results from the WOW.Com Content Network
A correlation coefficient is a numerical measure of some type of linear correlation, meaning a statistical relationship between two variables. [ a ] The variables may be two columns of a given data set of observations, often called a sample , or two components of a multivariate random variable with a known distribution .
The correlation coefficient can be derived by considering the cosine of the angle between two points representing the two sets of x and y co-ordinate data. [10] This expression is therefore a number between -1 and 1 and is equal to unity when all the points lie on a straight line.
Some correlation statistics, such as the rank correlation coefficient, are also invariant to monotone transformations of the marginal distributions of X and/or Y. Pearson/Spearman correlation coefficients between X and Y are shown when the two variables' ranges are unrestricted, and when the range of X is restricted to the interval (0,1).
Notably, correlation is dimensionless while covariance is in units obtained by multiplying the units of the two variables. If Y always takes on the same values as X , we have the covariance of a variable with itself (i.e. σ X X {\displaystyle \sigma _{XX}} ), which is called the variance and is more commonly denoted as σ X 2 , {\displaystyle ...
For instance, if the variable X has a continuous uniform distribution between 0 and 100 and Y is a dichotomous variable equal to 1 if X ≥ 50 and 0 if X < 50, the Tau-c statistic of X and Y is equal to 1 while Tau-b is equal to 0.707. A Tau-C equal to 1 can be interpreted as the best possible positive correlation conditional to marginal ...
If additional regressors are included, R 2 is the square of the coefficient of multiple correlation. In both such cases, the coefficient of determination normally ranges from 0 to 1. There are cases where R 2 can yield negative values. This can arise when the predictions that are being compared to the corresponding outcomes have not been ...
In statistics, the intraclass correlation, or the intraclass correlation coefficient (ICC), [1] is a descriptive statistic that can be used when quantitative measurements are made on units that are organized into groups. It describes how strongly units in the same group resemble each other.
The classical measure of dependence, the Pearson correlation coefficient, [1] is mainly sensitive to a linear relationship between two variables. Distance correlation was introduced in 2005 by Gábor J. Székely in several lectures to address this deficiency of Pearson's correlation, namely that it can easily be zero for dependent variables.