enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photoelectric effect - Wikipedia

    en.wikipedia.org/wiki/Photoelectric_effect

    The classical setup to observe the photoelectric effect includes a light source, a set of filters to monochromatize the light, a vacuum tube transparent to ultraviolet light, an emitting electrode (E) exposed to the light, and a collector (C) whose voltage V C can be externally controlled. [citation needed]

  3. Annus mirabilis papers - Wikipedia

    en.wikipedia.org/wiki/Annus_Mirabilis_papers

    He then postulated that light travels in packets whose energy depends on the frequency, and therefore only light above a certain frequency would bring sufficient energy to liberate an electron. Even after experiments confirmed that Einstein's equations for the photoelectric effect were accurate, his explanation was not universally accepted.

  4. Photon - Wikipedia

    en.wikipedia.org/wiki/Photon

    The classic photomultiplier tube exploits the photoelectric effect: a photon of sufficient energy strikes a metal plate and knocks free an electron, initiating an ever-amplifying avalanche of electrons. Semiconductor charge-coupled device chips use a similar effect: an incident photon generates a charge on a microscopic capacitor that can be ...

  5. Corpuscular theory of light - Wikipedia

    en.wikipedia.org/wiki/Corpuscular_theory_of_light

    The notions of light as a particle resurfaced in the 20th century with the photoelectric effect. In 1905, Albert Einstein explained this effect by introducing the concept of light quanta or photons. Quantum particles are considered to have wave–particle duality.

  6. Timeline of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_quantum_mechanics

    Albert Einstein explains the photoelectric effect (reported in 1887 by Heinrich Hertz), i.e. that shining light on certain materials can function to eject electrons from the material. He postulates, as based on Planck's quantum hypothesis (1900), that light itself consists of individual quantum particles (photons).

  7. Quantization of the electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Quantization_of_the...

    To explain the photoelectric effect, Albert Einstein assumed heuristically in 1905 that an electromagnetic field consists of particles of energy of amount hν, where h is the Planck constant and ν is the wave frequency.

  8. Double-slit experiment - Wikipedia

    en.wikipedia.org/wiki/Double-slit_experiment

    However, the later discovery of the photoelectric effect demonstrated that under different circumstances, light can behave as if it is composed of discrete particles. These seemingly contradictory discoveries made it necessary to go beyond classical physics and take into account the quantum nature of light.

  9. Luminiferous aether - Wikipedia

    en.wikipedia.org/wiki/Luminiferous_aether

    Moreover, in another paper published the same month in 1905, Einstein made several observations on a then-thorny problem, the photoelectric effect. In this work he demonstrated that light can be considered as particles that have a "wave-like nature". Particles obviously do not need a medium to travel, and thus, neither did light.