Search results
Results from the WOW.Com Content Network
In terms of the standard unit vectors i, j, k of Cartesian 3-space, these specific types of vector-valued functions are given by expressions such as = + + where f(t), g(t) and h(t) are the coordinate functions of the parameter t, and the domain of this vector-valued function is the intersection of the domains of the functions f, g, and h.
A vector may also result from the evaluation, at a particular instant, of a continuous vector-valued function (e.g., the pendulum equation). In the natural sciences, the term "vector quantity" also encompasses vector fields defined over a two-or three-dimensional region of space, such as wind velocity over Earth's surface.
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
In the natural sciences, a vector quantity (also known as a vector physical quantity, physical vector, or simply vector) is a vector-valued physical quantity. [ 1 ] [ 2 ] It is typically formulated as the product of a unit of measurement and a vector numerical value ( unitless ), often a Euclidean vector with magnitude and direction .
For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal.
In the theory of vector measures, Lyapunov's theorem states that the range of a finite-dimensional vector measure is closed and convex. [ 1 ] [ 2 ] [ 3 ] In fact, the range of a non-atomic vector measure is a zonoid (the closed and convex set that is the limit of a convergent sequence of zonotopes ). [ 2 ]
In mathematics, vector algebra may mean: The operations of vector addition and scalar multiplication of a vector space; The algebraic operations in vector calculus (vector analysis) – including the dot and cross products of 3-dimensional Euclidean space; Algebra over a field – a vector space equipped with a bilinear product