Search results
Results from the WOW.Com Content Network
Such multiple star systems are indicated by parentheses showing the individual magnitudes of component stars bright enough to make a detectable contribution. For example, the binary star system Alpha Centauri has the total or combined magnitude of −0.27, while its two component stars have magnitudes of +0.01 and +1.33. [3]
Rigel is a blue supergiant star in the constellation of Orion. It has the Bayer designation β Orionis, which is Latinized to Beta Orionis and abbreviated Beta Ori or β Ori. Rigel is the brightest and most massive component – and the eponym – of a star system of at least four stars that appear as a single blue-white point of light to the ...
Planetary nebulae are dynamic and tend to quickly fade in brightness as the progenitor star transitions to the white dwarf branch. If shown, a planetary nebula would be plotted to the right of the diagram's upper right quadrant. A black hole emits no visible light of its own, and therefore would not appear on the diagram. [126]
On early 20th century and older orthochromatic (blue-sensitive) photographic film, the relative brightnesses of the blue supergiant Rigel and the red supergiant Betelgeuse irregular variable star (at maximum) are reversed compared to what human eyes perceive, because this archaic film is more sensitive to blue light than it is to red light.
The first star in the list, Godzilla [1] — an LBV in the distant Sunburst galaxy — is probably the brightest star ever observed, although it is believed to be undergoing a temporary episode of increased luminosity that has lasted at least seven years, in a similar manner to the Great Eruption of Eta Carinae that was witnessed in the 19th ...
Regulus appears singular, but is actually a quadruple star system composed of four stars that are organized into two pairs. The spectroscopic binary Regulus A consists of a blue-white main-sequence star and its companion, which has not yet been directly observed, but is probably a white dwarf. The system lies approximately 79 light years from ...
The spectrum of Canopus indicates that it spent some 30 million years of its existence as a blue-white main sequence star of around 10 solar masses, before exhausting its core hydrogen and evolving away from the main sequence. [65] The position of Canopus in the H–R diagram indicates that it is currently in the core-helium burning phase. [53]
Only the primary is detected and it is a blue-white giant. It is separated from the Wolf–Rayet binary by 41.2″, easily resolved with binoculars. [11] The pair are too close to be separated without optical assistance, and they appear to the naked eye as a single star of apparent magnitude 1.72 (at the average brightness of γ 2 of 1.83).