Search results
Results from the WOW.Com Content Network
In physics, a rigid body, also known as a rigid object, [2] is a solid body in which deformation is zero or negligible. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass.
In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...
For a rigid body, the boundary of an object may change over time by continuous translation and rotation. For a deformable body the boundary may also be continuously deformed over time in other ways. An object has an identity. In general two objects with identical properties, other than position at an instance in time, may be distinguished as ...
In physics and continuum mechanics, deformation is the change in the shape or size of an object. It has dimension of length with SI unit of metre (m). It is quantified as the residual displacement of particles in a non-rigid body, from an initial configuration to a final configuration, excluding the body's average translation and rotation (its rigid transformation). [1]
Rigid body, in physics, a simplification of the concept of an object to allow for modelling; Rigid transformation, in mathematics, a rigid transformation preserves distances between every pair of points; Rigidity (chemistry), the tendency of a substance to retain/maintain their shape when subjected to outside force
In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. [3] More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables.
In order to define the twist of a rigid body, we must consider its movement defined by the parameterized set of spatial displacements, D(t) = ([A(t)], d(t)), where [A] is a rotation matrix and d is a translation vector. This causes a point p that is fixed in moving body coordinates to trace a curve P(t) in the fixed frame given by
In rigid body dynamics, force couples are free vectors, meaning their effects on a body are independent of the point of application. The resultant moment of a couple is a special case of moment. A couple has the property that it is independent of reference point.