enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    1 ⁠ cal / °C⋅g ⁠ = 1 ⁠ Cal / °Ckg ⁠ = 1 ⁠ kcal / °Ckg ⁠ = 4184 ⁠ J / kgK ⁠ [22] = 4.184 ⁠ kJ / kgK ⁠. Note that while cal is 1 ⁄ 1000 of a Cal or kcal, it is also per gram instead of kilo gram : ergo, in either unit, the specific heat capacity of water is approximately 1.

  3. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]

  4. Heat capacity - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity

    The "grand calorie" (also "kilocalorie", "kilogram-calorie", or "food calorie"; "kcal" or "Cal") is 1000 cal, that is, exactly 4184 J. It was originally defined so that the heat capacity of 1 kg of water would be 1 kcalC. With these units of heat energy, the units of heat capacity are 1 cal/°C = 4.184 J/K ; 1 kcalC = 4184 J/K.

  5. Boltzmann constant - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_constant

    Boltzmann constant: The Boltzmann constant, k, is one of seven fixed constants defining the International System of Units, the SI, with k = 1.380 649 x 10-23 J K-1.The Boltzmann constant is a proportionality constant between the quantities temperature (with unit kelvin) and energy (with unit joule).

  6. Specific energy - Wikipedia

    en.wikipedia.org/wiki/Specific_energy

    If a comet with this speed fell to the Earth it would gain another 63 MJ/kg, yielding a total of 2655 MJ/kg with a speed of 72.9 km/s. Since the equator is moving at about 0.5 km/s, the impact speed has an upper limit of 73.4 km/s, giving an upper limit for the specific energy of a comet hitting the Earth of about 2690 MJ/kg.

  7. Volumetric heat capacity - Wikipedia

    en.wikipedia.org/wiki/Volumetric_heat_capacity

    In monatomic gases (like argon) at room temperature and constant volume, volumetric heat capacities are all very close to 0.5 kJK −1 ⋅m −3, which is the same as the theoretical value of ⁠ 3 / 2 ⁠ RT per kelvin per mole of gas molecules (where R is the gas constant and T is temperature). As noted, the much lower values for gas heat ...

  8. Enthalpy of fusion - Wikipedia

    en.wikipedia.org/wiki/Enthalpy_of_fusion

    To heat 1 kg of liquid water from 0 °C to 20 °C requires 83.6 kJ (see below). However, heating 0 °C ice to 20 °C requires additional energy to melt the ice. We can treat these two processes independently and using the specific heat capacity of water to be 4.18 J/(g⋅K); thus, to heat 1 kg of ice from 273.15 K to water at 293.15 K (0 °C to ...

  9. Kilocalorie per mole - Wikipedia

    en.wikipedia.org/wiki/Kilocalorie_per_mole

    As typically measured, one kcal/mol represents a temperature increase of one degree Celsius in one liter of water (with a mass of 1 kg) resulting from the reaction of one mole of reagents. In SI units , one kilocalorie per mole is equal to 4.184 kilojoules per mole (kJ/mol), which comes to approximately 6.9477 × 10 −21 joules per molecule ...