enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    A square root of a number x is a number r which, when squared, becomes x: =. Every positive real number has two square roots, one positive and one negative. For example, the two square roots of 25 are 5 and −5. The positive square root is also known as the principal square root, and is denoted with a radical sign:

  3. Triangular number - Wikipedia

    en.wikipedia.org/wiki/Triangular_number

    The digital root pattern for triangular numbers, repeating every nine terms, as shown above, is "1, 3, 6, 1, 6, 3, 1, 9, 9". The converse of the statement above is, however, not always true. For example, the digital root of 12, which is not a triangular number, is 3 and divisible by three.

  4. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    Newton's method is a powerful technique—if the derivative of the function at the root is nonzero, then the convergence is at least quadratic: as the method converges on the root, the difference between the root and the approximation is squared (the number of accurate digits roughly doubles) at each step. However, there are some difficulties ...

  5. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    Geometric representation of the 2nd to 6th root of a general complex number in polar form. For the nth root of unity, set r = 1 and φ = 0. The principal root is in black. An n th root of unity, where n is a positive integer, is a number z satisfying the equation [1] [2] =

  6. Power residue symbol - Wikipedia

    en.wikipedia.org/wiki/Power_residue_symbol

    Let k be an algebraic number field with ring of integers that contains a primitive n-th root of unity.. Let be a prime ideal and assume that n and are coprime (i.e. .). The norm of is defined as the cardinality of the residue class ring (note that since is prime the residue class ring is a finite field):

  7. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  8. Root of unity modulo n - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity_modulo_n

    In number theory, a kth root of unity modulo n for positive integers k, n ≥ 2, is a root of unity in the ring of integers modulo n; that is, a solution x to the equation (or congruence) (). If k is the smallest such exponent for x, then x is called a primitive kth root of unity modulo n. [1]

  9. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    Analogously, the inverses of tetration are often called the super-root, and the super-logarithm (In fact, all hyperoperations greater than or equal to 3 have analogous inverses); e.g., in the function =, the two inverses are the cube super-root of y and the super-logarithm base y of x.