enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    The rule states that if the nonzero terms of a single-variable polynomial with real coefficients are ordered by descending variable exponent, then the number of positive roots of the polynomial is either equal to the number of sign changes between consecutive (nonzero) coefficients, or is less than it by an even number.

  3. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    Moreover, if one sets x = 1 + t, one gets without computation that () = (+) is a polynomial in t with the same first coefficient 3 and constant term 1. [2] The rational root theorem implies thus that a rational root of Q must belong to {,}, and thus that the rational roots of P satisfy = + {,,,}.

  4. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    The complex conjugate root theorem states that if the coefficients of a polynomial are real, then the non-real roots appear in pairs of the form (a + ib, a – ib). It follows that the roots of a polynomial with real coefficients are mirror-symmetric with respect to the real axis.

  5. Complex conjugate root theorem - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate_root_theorem

    It follows from the present theorem and the fundamental theorem of algebra that if the degree of a real polynomial is odd, it must have at least one real root. [2] This can be proved as follows. Since non-real complex roots come in conjugate pairs, there are an even number of them; But a polynomial of odd degree has an odd number of roots;

  6. Square root of 2 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_2

    The square root of 2 (approximately 1.4142) is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written in mathematics as 2 {\displaystyle {\sqrt {2}}} or 2 1 / 2 {\displaystyle 2^{1/2}} .

  7. Lill's method - Wikipedia

    en.wikipedia.org/wiki/Lill's_method

    Finding roots of 3x 2 +5x−2. Lill's method can be used with Thales's theorem to find the real roots of a quadratic polynomial. In this example with 3x 2 +5x−2, the polynomial's line segments are first drawn in black, as above. A circle is drawn with the straight line segment joining the start and end points forming a diameter.

  8. Fundamental theorem of algebra - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of_algebra

    The fundamental theorem of algebra, also called d'Alembert's theorem [1] or the d'Alembert–Gauss theorem, [2] states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex number with its imaginary part ...

  9. Vincent's theorem - Wikipedia

    en.wikipedia.org/wiki/Vincent's_theorem

    Vincent was the last author in the 19th century to use his theorem for the isolation of the real roots of a polynomial. The reason for that was the appearance of Sturm's theorem in 1827, which solved the real root isolation problem in polynomial time, by defining the precise number of real roots a polynomial has in a real open interval (a, b).