enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotating spheres - Wikipedia

    en.wikipedia.org/wiki/Rotating_spheres

    Figure 1: Two spheres tied with a string and rotating at an angular rate ω. Because of the rotation, the string tying the spheres together is under tension. Figure 2: Exploded view of rotating spheres in an inertial frame of reference showing the centripetal forces on the spheres provided by the tension in the tying string.

  3. Rotational frequency - Wikipedia

    en.wikipedia.org/wiki/Rotational_frequency

    Rotational frequency, also known as rotational speed or rate of rotation (symbols ν, lowercase Greek nu, and also n), is the frequency of rotation of an object around an axis. Its SI unit is the reciprocal seconds (s −1 ); other common units of measurement include the hertz (Hz), cycles per second (cps), and revolutions per minute (rpm).

  4. Coriolis frequency - Wikipedia

    en.wikipedia.org/wiki/Coriolis_frequency

    The rotation rate of the Earth (Ω = 7.2921 × 10 −5 rad/s) can be calculated as 2π / T radians per second, where T is the rotation period of the Earth which is one sidereal day (23 h 56 min 4.1 s). [2] In the midlatitudes, the typical value for is about 10 −4 rad/s.

  5. Angular velocity - Wikipedia

    en.wikipedia.org/wiki/Angular_velocity

    In physics, angular velocity (symbol ω or , the lowercase Greek letter omega), also known as angular frequency vector, [1] is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates (spins or revolves) around an axis of rotation and how fast the axis itself changes direction.

  6. Absolute rotation - Wikipedia

    en.wikipedia.org/wiki/Absolute_rotation

    Beyond a simple "yes or no" answer to rotation, one may actually calculate one's rotation. To do that, one takes one's measured rate of rotation of the spheres and computes the tension appropriate to this observed rate. This calculated tension then is compared to the measured tension. If the two agree, one is in a stationary (non-rotating) frame.

  7. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    Figure 1: Velocity v and acceleration a in uniform circular motion at angular rate ω; the speed is constant, but the velocity is always tangential to the orbit; the acceleration has constant magnitude, but always points toward the center of rotation.

  8. Inertial wave - Wikipedia

    en.wikipedia.org/wiki/Inertial_wave

    Moreover, the frequency of the wave is determined by its direction of travel. Waves traveling perpendicular to the axis of rotation have zero frequency and are sometimes called the geostrophic modes. Waves traveling parallel to the axis have maximum frequency (twice the rotation rate), and waves at intermediate angles have intermediate frequencies.

  9. Angular frequency - Wikipedia

    en.wikipedia.org/wiki/Angular_frequency

    A sphere rotating around an axis. Points farther from the axis move faster, satisfying ω = v / r.. In physics, angular frequency (symbol ω), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine function (for example, in oscillations and waves).