Search results
Results from the WOW.Com Content Network
Sobel and Feldman presented the idea of an "Isotropic 3 × 3 Image Gradient Operator" at a talk at SAIL in 1968. [1] Technically, it is a discrete differentiation operator , computing an approximation of the gradient of the image intensity function.
An edge in an image may point in a variety of directions, so the Canny algorithm uses four filters to detect horizontal, vertical and diagonal edges in the blurred image. The edge detection operator (such as Roberts, Prewitt, or Sobel) returns a value for the first derivative in the horizontal direction (G x) and the vertical direction (G y ...
1. A two-dimensional smoothing filter: [] [] = []2. Another two-dimensional smoothing filter with stronger weight in the middle: [] [] = []3. The Sobel operator, used commonly for edge detection:
This technique is employed after the image has been filtered for noise (using median, Gaussian filter etc.), the edge operator has been applied (like the ones described above, Canny or Sobel) to detect the edges and after the edges have been smoothed using an appropriate threshold value.
The Hessian affine region detector is a feature detector used in the fields of computer vision and image analysis.Like other feature detectors, the Hessian affine detector is typically used as a preprocessing step to algorithms that rely on identifiable, characteristic interest points.
In image processing, a kernel, convolution matrix, or mask is a small matrix used for blurring, sharpening, embossing, edge detection, and more.This is accomplished by doing a convolution between the kernel and an image.
The most common way to approximate the image gradient is to convolve an image with a kernel, such as the Sobel operator or Prewitt operator. Image gradients are often utilized in maps and other visual representations of data in order to convey additional information.
In computer vision, maximally stable extremal regions (MSER) technique is used as a method of blob detection in images. This technique was proposed by Matas et al. [1] to find correspondences between image elements taken from two images with different viewpoints.