enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Delta-v budget - Wikipedia

    en.wikipedia.org/wiki/Delta-v_budget

    Delta-v in feet per second, and fuel requirements for a typical Apollo Lunar Landing mission. In astrodynamics and aerospace, a delta-v budget is an estimate of the total change in velocity (delta-v) required for a space mission. It is calculated as the sum of the delta-v required to perform each propulsive maneuver needed during

  3. Orbital inclination change - Wikipedia

    en.wikipedia.org/wiki/Orbital_inclination_change

    In some cases, it can require less total delta-v to raise the satellite into a higher orbit, change the orbit plane at the higher apogee, and then lower the satellite to its original altitude. [ 1 ] For the most efficient example mentioned above, targeting an inclination at apoapsis also changes the argument of periapsis .

  4. Delta-v - Wikipedia

    en.wikipedia.org/wiki/Delta-v

    Delta-v is typically provided by the thrust of a rocket engine, but can be created by other engines. The time-rate of change of delta-v is the magnitude of the acceleration caused by the engines, i.e., the thrust per total vehicle mass. The actual acceleration vector would be found by adding thrust per mass on to the gravity vector and the ...

  5. File:Solar system delta v map.svg - Wikipedia

    en.wikipedia.org/wiki/File:Solar_system_delta_v...

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  6. Orbital station-keeping - Wikipedia

    en.wikipedia.org/wiki/Orbital_station-keeping

    These are executed as thruster burns orthogonal to the orbital plane. For Sun-synchronous spacecraft having a constant geometry relative to the Sun, the inclination change due to the solar gravitation is particularly large; a delta-v in the order of 1–2 m/s per year can be needed to keep the inclination constant. [citation needed]

  7. Bi-elliptic transfer - Wikipedia

    en.wikipedia.org/wiki/Bi-elliptic_transfer

    The magnitude of the required delta-v for this burn is =. When the apoapsis of the first transfer ellipse is reached at a distance r b {\displaystyle r_{b}} from the primary, a second prograde burn (mark 2) raises the periapsis to match the radius of the target circular orbit, putting the spacecraft on a second elliptic trajectory (orange half ...

  8. Free-return trajectory - Wikipedia

    en.wikipedia.org/wiki/Free-return_trajectory

    Sketch of a circumlunar free return trajectory (not to scale), plotted on the rotating reference frame rotating with the moon. (Moon's motion only shown for clarity) In orbital mechanics, a free-return trajectory is a trajectory of a spacecraft traveling away from a primary body (for example, the Earth) where gravity due to a secondary body (for example, the Moon) causes the spacecraft to ...

  9. Orbit phasing - Wikipedia

    en.wikipedia.org/wiki/Orbit_phasing

    Remember that this change in velocity, ∆V, is only the amount required to change the spacecraft from its original orbit to the phasing orbit.A second change in velocity equal to the magnitude but opposite in direction of the first must be done after the spacecraft travels one phase orbit period to return the spacecraft from the phasing orbit to the original orbit.