enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lyman continuum photons - Wikipedia

    en.wikipedia.org/wiki/Lyman_continuum_photons

    In the case of neutral atomic hydrogen, the minimum ionization energy is equal to the Lyman limit, where the photon has enough energy to completely ionize the atom, resulting in a free proton and a free electron. Above this energy (below this wavelength), all wavelengths of light may be absorbed. This forms a continuum in the energy spectrum ...

  3. Lyman series - Wikipedia

    en.wikipedia.org/wiki/Lyman_series

    The transitions are named sequentially by Greek letters: from n = 2 to n = 1 is called Lyman-alpha, 3 to 1 is Lyman-beta, 4 to 1 is Lyman-gamma, and so on. The series is named after its discoverer, Theodore Lyman. The greater the difference in the principal quantum numbers, the higher the energy of the electromagnetic emission.

  4. Lyman-alpha - Wikipedia

    en.wikipedia.org/wiki/Lyman-alpha

    Lyman-alpha, typically denoted by Ly-α, is a spectral line of hydrogen (or, more generally, of any one-electron atom) in the Lyman series. It is emitted when the atomic electron transitions from an n = 2 orbital to the ground state ( n = 1), where n is the principal quantum number .

  5. Lyman limit - Wikipedia

    en.wikipedia.org/wiki/Lyman_limit

    The Lyman limit is the short-wavelength end of the hydrogen Lyman series, at 91.13 nm (911.3 Å)(13.6 eV). It corresponds to the energy required for an electron in the hydrogen ground state to escape from the electric potential barrier that originally confined it, thus creating a hydrogen ion. [1] This energy is equivalent to the Rydberg constant.

  6. Hydrogen spectral series - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_spectral_series

    The spectral lines are grouped into series according to n′. Lines are named sequentially starting from the longest wavelength/lowest frequency of the series, using Greek letters within each series. For example, the 2 → 1 line is called "Lyman-alpha" (Ly-α), while the 7 → 3 line is called "Paschen-delta" (Pa-δ).

  7. Lyman-alpha emitter - Wikipedia

    en.wikipedia.org/wiki/Lyman-alpha_emitter

    A Lyman-alpha emitter (LAE) is a type of distant galaxy that emits Lyman-alpha radiation from neutral hydrogen. Most known LAEs are extremely distant, and because of the finite travel time of light they provide glimpses into the history of the universe.

  8. Lyman–Werner photons - Wikipedia

    en.wikipedia.org/wiki/Lyman–Werner_photons

    In reference to the figure shown, Lyman-Werner photons are emitted as described below: A hydrogen molecule can absorb a far-ultraviolet photon (11.2 eV < energy of the photon < 13.6 eV) and make a transition from the ground electronic state X to excited state B (Lyman) or C (Werner). Radiative decay occurs rapidly.

  9. Lyman-break galaxy - Wikipedia

    en.wikipedia.org/wiki/Lyman-break_galaxy

    In the rest frame of the emitting galaxy, the emitted spectrum is bright at wavelengths longer than 912 Å, but very dim or imperceptible at shorter wavelengths—this is known as a "dropout", or "break", and can be used to find the position of the Lyman limit. Light with a wavelength shorter than 912 Å is in the far-ultraviolet range and is ...