enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    Capacitance is the capacity of a material object or device to store electric charge. It is measured by the charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are two closely related notions of capacitance: self capacitance and mutual capacitance.

  3. Coefficients of potential - Wikipedia

    en.wikipedia.org/wiki/Coefficients_of_potential

    In this example, we employ the method of coefficients of potential to determine the capacitance on a two-conductor system. For a two-conductor system, the system of linear equations is ϕ 1 = p 11 Q 1 + p 12 Q 2 ϕ 2 = p 21 Q 1 + p 22 Q 2 . {\displaystyle {\begin{matrix}\phi _{1}=p_{11}Q_{1}+p_{12}Q_{2}\\\phi _{2}=p_{21}Q_{1}+p_{22}Q_{2}\end ...

  4. Electric potential - Wikipedia

    en.wikipedia.org/wiki/Electric_potential

    The electric potential and the magnetic vector potential together form a four-vector, so that the two kinds of potential are mixed under Lorentz transformations. Practically, the electric potential is a continuous function in all space, because a spatial derivative of a discontinuous electric potential yields an electric field of impossibly ...

  5. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    In advanced classical mechanics it is often useful, and in quantum mechanics frequently essential, to express Maxwell's equations in a potential formulation involving the electric potential (also called scalar potential) φ, and the magnetic potential (a vector potential) A. For example, the analysis of radio antennas makes full use of Maxwell ...

  6. Electricity - Wikipedia

    en.wikipedia.org/wiki/Electricity

    The electric field was formally defined as the force exerted per unit charge, but the concept of potential allows for a more useful and equivalent definition: the electric field is the local gradient of the electric potential. Usually expressed in volts per metre, the vector direction of the field is the line of greatest slope of potential, and ...

  7. Farad - Wikipedia

    en.wikipedia.org/wiki/Farad

    The capacitance of a capacitor is one farad when one coulomb of charge changes the potential between the plates by one volt. [1] [2] Equally, one farad can be described as the capacitance which stores a one-coulomb charge across a potential difference of one volt. [3] The relationship between capacitance, charge, and potential difference is linear.

  8. Introduction to electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Introduction_to...

    The electric potential is the same everywhere inside the conductor and is constant across the surface of the conductor. This follows from the first statement because the field is zero everywhere inside the conductor and therefore the potential is constant within the conductor too. The electric field is perpendicular to the surface of a conductor.

  9. Capacitor - Wikipedia

    en.wikipedia.org/wiki/Capacitor

    For example, in charging such a capacitor the differential increase in voltage with charge is governed by: = where the voltage dependence of capacitance, C(V), suggests that the capacitance is a function of the electric field strength, which in a large area parallel plate device is given by ε = V/d.