enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wave–particle duality - Wikipedia

    en.wikipedia.org/wiki/Wave–particle_duality

    In the late 17th century, Sir Isaac Newton had advocated that light was particles, but Christiaan Huygens took an opposing wave approach. While Newton had favored a particle approach, he was the first to attempt to reconcile both wave and particle theories of light, and the only one in his time to consider both, thereby anticipating modern wave-particle duality.

  3. Double-slit experiment - Wikipedia

    en.wikipedia.org/wiki/Double-slit_experiment

    The experiment belongs to a general class of "double path" experiments, in which a wave is split into two separate waves (the wave is typically made of many photons and better referred to as a wave front, not to be confused with the wave properties of the individual photon) that later combine into a single wave.

  4. Davisson–Germer experiment - Wikipedia

    en.wikipedia.org/wiki/Davisson–Germer_experiment

    An important contribution to the Davisson–Germer experiment was made by Walter M. Elsasser in Göttingen in the 1920s, who remarked that the wave-like nature of matter might be investigated by electron scattering experiments on crystalline solids, just as the wave-like nature of X-rays had been confirmed through Barkla's X-ray scattering ...

  5. Matter wave - Wikipedia

    en.wikipedia.org/wiki/Matter_wave

    The third class are matter waves which have a wavevector, a wavelength and vary with time, but have a zero group velocity or probability flux. The simplest of these, similar to the notation above would be cos ⁡ ( k ⋅ r − ω t ) {\displaystyle \cos(\mathbf {k} \cdot \mathbf {r} -\omega t)} These occur as part of the particle in a box , and ...

  6. Photon - Wikipedia

    en.wikipedia.org/wiki/Photon

    A photon (from Ancient Greek φῶς, φωτός (phôs, phōtós) 'light') is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force.

  7. Electromagnetic radiation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_radiation

    In electromagnetic radiation (such as microwaves from an antenna, shown here) the term radiation applies only to the parts of the electromagnetic field that radiate into infinite space and decrease in intensity by an inverse-square law of power, such that the total energy that crosses through an imaginary sphere surrounding the source is the ...

  8. Subsidy Scorecards: Washington State University

    projects.huffingtonpost.com/projects/ncaa/...

    SOURCE: Integrated Postsecondary Education Data System, Washington State University (2014, 2013, 2012, 2011, 2010).Read our methodology here.. HuffPost and The Chronicle examined 201 public D-I schools from 2010-2014.

  9. Radiation - Wikipedia

    en.wikipedia.org/wiki/Radiation

    Radiation, in general, exists throughout nature, such as in light and sound. In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or a material medium. [1] [2] This includes: