Search results
Results from the WOW.Com Content Network
Acid rain is rain or any other form of precipitation that is unusually acidic, meaning that it has elevated levels of hydrogen ions (low pH).Most water, including drinking water, has a neutral pH that exists between 6.5 and 8.5, but acid rain has a pH level lower than this and ranges from 4–5 on average.
Diagram depicting the sources and cycles of acid rain precipitation. Freshwater acidification occurs when acidic inputs enter a body of fresh water through the weathering of rocks, invasion of acidifying gas (e.g. carbon dioxide), or by the reduction of acid anions, like sulfate and nitrate within a lake, pond, or reservoir. [1]
Acid-neutralizing capacity or ANC in short is a measure for the overall buffering capacity against acidification of a solution, e.g. surface water or soil water.. ANC is defined as the difference between cations of strong bases and anions of strong acids (see below), or dynamically as the amount of acid needed to change the pH value from the sample's value to a chosen different value. [1]
The pH after the equivalence point depends on the concentration of the conjugate base of the weak acid and the strong base of the titrant. However, the base of the titrant is stronger than the conjugate base of the acid. Therefore, the pH in this region is controlled by the strong base. As such the pH can be found using the following: [1]
This compound causes rainfall pH to be around 5.0–5.5. When rainfall has a lower pH than natural levels, it can cause rapid acidification of soil. Sulfur dioxide and nitrogen oxides are precursors of stronger acids that can lead to acid rain production when they react with water in the atmosphere
Upon exposure to oxygen (O 2) and water (H 2 O), metal sulfides undergo oxidation to produce metal-rich acidic effluent. If the pH is low enough to overcome the natural buffering capacity of the surrounding rocks (‘calcium carbonate equivalent’ or ‘acid neutralising capacity’), the surrounding area may become acidic, as well as contaminated with high levels of heavy metals.
Both the oxidation and reduction steps are pH dependent. Figure 1 shows the standard potentials at pH 0 (strongly acidic) as referenced to the normal hydrogen electrode (NHE). 2 half reactions (at pH = 0) Oxidation 2H 2 O → 4H + + 4e − + O 2 E° = +1.23 V vs. NHE Reduction 4H + + 4e − → 2H 2 E° = 0.00 V vs. NHE
The values below are standard apparent reduction potentials (E°') for electro-biochemical half-reactions measured at 25 °C, 1 atmosphere and a pH of 7 in aqueous solution. [1] [2] The actual physiological potential depends on the ratio of the reduced (Red) and oxidized (Ox) forms according to the Nernst equation and the thermal voltage.