enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.

  3. One-way wave equation - Wikipedia

    en.wikipedia.org/wiki/One-way_wave_equation

    A one-way wave equation is a first-order partial differential equation describing one wave traveling in a direction defined by the vector wave velocity. It contrasts with the second-order two-way wave equation describing a standing wavefield resulting from superposition of two waves in opposite directions (using the squared scalar wave velocity).

  4. d'Alembert's formula - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_formula

    All second order differential equations with constant coefficients can be transformed into their respective canonic forms. This equation is one of these three cases: Elliptic partial differential equation, Parabolic partial differential equation and Hyperbolic partial differential equation.

  5. Acoustic wave equation - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave_equation

    In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t. A simplified (scalar) form of the ...

  6. Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_equation

    The Helmholtz equation has a variety of applications in physics and other sciences, including the wave equation, the diffusion equation, and the Schrödinger equation for a free particle. In optics, the Helmholtz equation is the wave equation for the electric field. [1] The equation is named after Hermann von Helmholtz, who studied it in 1860. [2]

  7. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  8. Particle in a ring - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_ring

    The azimuthal wave functions in that case are identical to the energy eigenfunctions of the particle on a ring. The statement that any wavefunction for the particle on a ring can be written as a superposition of energy eigenfunctions is exactly identical to the Fourier theorem about the development of any periodic function in a Fourier series.

  9. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    Solution of a 1D heat partial differential equation. ... and ψ is the wave function of the particle. This equation is formally similar to the particle diffusion ...