Search results
Results from the WOW.Com Content Network
For the one-dimensional wave equation a relatively simple general solution may be found. ... for the wave equation. For velocity impulse, (,) = ...
The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.
The dynamic wave is the full one-dimensional Saint-Venant equation. It is numerically challenging to solve, but is valid for all channel flow scenarios. The dynamic wave is used for modeling transient storms in modeling programs including Mascaret (EDF), SIC (Irstea) , HEC-RAS , [ 18 ] InfoWorks_ICM Archived 2016-10-25 at the Wayback Machine ...
A one-way wave equation is a first-order partial differential equation describing one wave traveling in a direction defined by the vector wave velocity. It contrasts with the second-order two-way wave equation describing a standing wavefield resulting from superposition of two waves in opposite directions (using the squared scalar wave velocity).
In the physical sciences, the wavenumber (or wave number), also known as repetency, [1] is the spatial frequency of a wave. Ordinary wavenumber is defined as the number of wave cycles divided by length; it is a physical quantity with dimension of reciprocal length , expressed in SI units of cycles per metre or reciprocal metre (m −1 ).
The two-dimensional analogue of the vibrating string is the vibrating membrane, with the edges clamped to be motionless. The Helmholtz equation was solved for many basic shapes in the 19th century: the rectangular membrane by Siméon Denis Poisson in 1829, the equilateral triangle by Gabriel Lamé in 1852, and the circular membrane by Alfred Clebsch in 1862.
In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t. A simplified (scalar) form of the ...
Wave characteristics. Dispersion of gravity waves on a fluid surface. Phase and group velocity divided by √ gh as a function of h / λ . A: phase velocity, B: group velocity, C: phase and group velocity √ gh valid in shallow water.