Search results
Results from the WOW.Com Content Network
An imaginary number is the product of a real number and the imaginary unit i, [note 1] which is defined by its property i 2 = −1. [1] [2] The square of an imaginary number bi is −b 2. For example, 5i is an imaginary number, and its square is −25. The number zero is considered to be both real and imaginary. [3]
A real number a can be regarded as a complex number a + 0i, whose imaginary part is 0. A purely imaginary number bi is a complex number 0 + bi, whose real part is zero. As with polynomials, it is common to write a + 0i = a, 0 + bi = bi, and a + (−b)i = a − bi; for example, 3 + (−4)i = 3 − 4i.
Argand diagram refers to a geometric plot of complex numbers as points z = x + iy using the horizontal x-axis as the real axis and the vertical y-axis as the imaginary axis. [3] Such plots are named after Jean-Robert Argand (1768–1822), although they were first described by Norwegian–Danish land surveyor and mathematician Caspar Wessel ...
x is the argument of the complex number (angle between line to point and x-axis in polar form). The notation is less commonly used in mathematics than Euler's formula , e ix , which offers an even shorter notation for cos x + i sin x , but cis(x) is widely used as a name for this function in software libraries .
Geometric representation (Argand diagram) of and its conjugate ¯ in the complex plane.The complex conjugate is found by reflecting across the real axis.. In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign.
In arithmetic, a complex-base system is a positional numeral system whose radix is an imaginary (proposed by Donald Knuth in 1955 [1] [2]) or complex number (proposed by S. Khmelnik in 1964 [3] and Walter F. Penney in 1965 [4] [5] [6]).
The imaginary unit i in the complex plane: Real numbers are conventionally drawn on the horizontal axis, and imaginary numbers on the vertical axis.. The imaginary unit or unit imaginary number (i) is a solution to the quadratic equation x 2 + 1 = 0.
A split-complex number is an ordered pair of real numbers, written in the form = + where x and y are real numbers and the hyperbolic unit [1] j satisfies = + In the field of complex numbers the imaginary unit i satisfies =