Search results
Results from the WOW.Com Content Network
There are two possibilities: if =, the spheres coincide, and the intersection is the entire sphere; if , the spheres are disjoint and the intersection is empty. When a is nonzero, the intersection lies in a vertical plane with this x-coordinate, which may intersect both of the spheres, be tangent to both spheres, or external to both spheres.
Circles on the sphere are, like circles in the plane, made up of all points a certain distance from a fixed point on the sphere. The intersection of a sphere and a plane is a circle, a point, or empty. [18] Great circles are the intersection of the sphere with a plane passing through the center of a sphere: others are called small circles.
The key observation that leads to Lie sphere geometry is that theorems of Euclidean geometry in the plane (resp. in space) which only depend on the concepts of circles (resp. spheres) and their tangential contact have a more natural formulation in a more general context in which circles, lines and points (resp. spheres, planes and points) are treated on an equal footing.
In the extrinsic 3-dimensional picture, a great circle is the intersection of the sphere with any plane through the center. In the intrinsic approach, a great circle is a geodesic ; a shortest path between any two of its points provided they are close enough.
The disk bounded by a great circle is called a great disk: it is the intersection of a ball and a plane passing through its center. In higher dimensions, the great circles on the n-sphere are the intersection of the n-sphere with 2-planes that pass through the origin in the Euclidean space R n + 1.
If the sphere is isometrically embedded in Euclidean space, the sphere's intersection with a plane is a circle, which can be interpreted extrinsically to the sphere as a Euclidean circle: a locus of points in the plane at a constant Euclidean distance (the extrinsic radius) from a point in the plane (the extrinsic center). A great circle lies ...
The intersection of two planes. The analytic determination of the intersection curve of two surfaces is easy only in simple cases; for example: a) the intersection of two planes, b) plane section of a quadric (sphere, cylinder, cone, etc.), c) intersection of two quadrics in special cases. For the general case, literature provides algorithms ...
The three spheres can be sandwiched uniquely between two planes. Each pair of spheres defines a cone that is externally tangent to both spheres, and the apex of this cone corresponds to the intersection point of the two external tangents, i.e., the external homothetic center. Since one line of the cone lies in each plane, the apex of each cone ...