Ad
related to: polynomial function example equation
Search results
Results from the WOW.Com Content Network
For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and ...
Such polynomials often arise in a quadratic equation + + = The solutions to this equation are called the roots and can be expressed in terms of the coefficients as the quadratic formula. Each quadratic polynomial has an associated quadratic function, whose graph is a parabola.
For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial. For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x ...
A polynomial equation is solvable by radicals if its Galois group is a solvable group. In the case of irreducible quintics, the Galois group is a subgroup of the symmetric group S 5 of all permutations of a five element set, which is solvable if and only if it is a subgroup of the group F 5 , of order 20 , generated by the cyclic permutations ...
The solutions of the quadratic equation ax 2 + bx + c = 0 correspond to the roots of the function f(x) = ax 2 + bx + c, since they are the values of x for which f(x) = 0. If a , b , and c are real numbers and the domain of f is the set of real numbers, then the roots of f are exactly the x - coordinates of the points where the graph touches the ...
In algebra, a quartic function is a function of the form = + + + +, α. where a is nonzero, which is defined by a polynomial of degree four, called a quartic polynomial. A quartic equation, or equation of the fourth degree, is an equation that equates a quartic polynomial to zero, of the form
A sextic function is a function defined by a sextic polynomial. Because they have an even degree, sextic functions appear similar to quartic functions when graphed, except they may possess an additional local maximum and local minimum each. The derivative of a sextic function is a quintic function.
In mathematics, an algebraic equation or polynomial equation is an equation of the form =, where P is a polynomial with coefficients in some field, often the field of the rational numbers. For example, x 5 − 3 x + 1 = 0 {\displaystyle x^{5}-3x+1=0} is an algebraic equation with integer coefficients and
Ad
related to: polynomial function example equation