enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nucleoplasm - Wikipedia

    en.wikipedia.org/wiki/Nucleoplasm

    Nucleoplasm is quite similar to the cytoplasm, with the main difference being that nucleoplasm is found inside the nucleus while the cytoplasm is located inside the cell, outside of the nucleus. Their ionic compositions are nearly identical due to the ion pumps and permeability of the nuclear envelope, however, the proteins in these two fluids ...

  3. Molecular models of DNA - Wikipedia

    en.wikipedia.org/wiki/Molecular_models_of_DNA

    The DNA model shown (far right) is a space-filling, or CPK, model of the DNA double helix. Animated molecular models, such as the wire, or skeletal, type shown at the top of this article, allow one to visually explore the three-dimensional (3D) structure of DNA. Another type of DNA model is the space-filling, or CPK, model.

  4. Solenoid (DNA) - Wikipedia

    en.wikipedia.org/wiki/Solenoid_(DNA)

    In 1974, it was first proposed by Roger Kornberg that chromatin was based on a repeating unit of a histone octamer and around 200 base pairs of DNA. [1] The solenoid model was first proposed by John Finch and Aaron Klug in 1976. They used electron microscopy images and X-ray diffraction patterns to determine their model of the structure. [2]

  5. Nuclear envelope - Wikipedia

    en.wikipedia.org/wiki/Nuclear_envelope

    The inner nuclear membrane encloses the nucleoplasm, and is covered by the nuclear lamina, a mesh of intermediate filaments which stabilizes the nuclear membrane as well as being involved in chromatin function. [9] It is connected to the outer membrane by nuclear pores which penetrate the membranes.

  6. Chromatin - Wikipedia

    en.wikipedia.org/wiki/Chromatin

    The arrangement of chromatin within the nucleus may also play a role in nuclear stress and restoring nuclear membrane deformation by mechanical stress. When chromatin is condensed, the nucleus becomes more rigid. When chromatin is decondensed, the nucleus becomes more elastic with less force exerted on the inner nuclear membrane. This ...

  7. Nuclear organization - Wikipedia

    en.wikipedia.org/wiki/Nuclear_Organization

    Chromatin remodeling enzymes: These enzymes are responsible for promoting euchromatin or heterochromatin formation by a number of processes, particularly modifying histone tails or physically moving the nucleosomes. This in turn, helps regulate gene expression, replication, and how the chromatin interacts with architectural factors. [16]

  8. Nuclear pore - Wikipedia

    en.wikipedia.org/wiki/Nuclear_pore

    The nuclear pore complex (NPC) is a crucial cellular structure with a diameter of approximately 120 nanometers in vertebrates. Its channel varies from 5.2 nanometers in humans [13] to 10.7 nm in the frog Xenopus laevis, with a depth of roughly 45 nm. [14]

  9. Nuclear lamina - Wikipedia

    en.wikipedia.org/wiki/Nuclear_lamina

    The nuclear lamina consists of two components, lamins and nuclear lamin-associated membrane proteins. The lamins are type V intermediate filaments which can be categorized as either A-type (lamin A, C) or B-type (lamin B 1, B 2) according to homology of their DNA sequences, biochemical properties and cellular localization during the cell cycle.