enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of nonlinear ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/List_of_nonlinear_ordinary...

    Nonlinear ones are of particular interest for their commonality in describing real-world systems and how much more difficult they are to solve compared to linear differential equations. This list presents nonlinear ordinary differential equations that have been named, sorted by area of interest.

  3. Adomian decomposition method - Wikipedia

    en.wikipedia.org/wiki/Adomian_decomposition_method

    The Adomian decomposition method (ADM) is a semi-analytical method for solving ordinary and partial nonlinear differential equations.The method was developed from the 1970s to the 1990s by George Adomian, chair of the Center for Applied Mathematics at the University of Georgia. [1]

  4. Direct multiple shooting method - Wikipedia

    en.wikipedia.org/wiki/Direct_multiple_shooting...

    Finite precision numerics may make it impossible at all to find initial values that allow for the solution of the ODE on the whole time interval. The nonlinearity of the ODE effectively becomes a nonlinearity of F, and requires a root-finding technique capable of solving nonlinear systems. Such methods typically converge slower as ...

  5. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly.

  6. Homotopy analysis method - Wikipedia

    en.wikipedia.org/wiki/Homotopy_analysis_method

    In the last twenty years, the HAM has been applied to solve a growing number of nonlinear ordinary/partial differential equations in science, finance, and engineering. [8] [9] For example, multiple steady-state resonant waves in deep and finite water depth [10] were found with the wave resonance criterion of arbitrary number of traveling gravity waves; this agreed with Phillips' criterion for ...

  7. Poincaré–Lindstedt method - Wikipedia

    en.wikipedia.org/wiki/Poincaré–Lindstedt_method

    We solve the van der Pol oscillator only up to order 2. This method can be continued indefinitely in the same way, where the order-n term ϵ n x n {\displaystyle \epsilon ^{n}x_{n}} consists of a harmonic term a n cos ⁡ ( t ) + b n cos ⁡ ( t ) {\displaystyle a_{n}\cos(t)+b_{n}\cos(t)} , plus some super-harmonic terms a n , 2 cos ⁡ ( 2 t ...

  8. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    When physical phenomena are modeled with non-linear equations, they are generally approximated by linear differential equations for an easier solution. The few non-linear ODEs that can be solved explicitly are generally solved by transforming the equation into an equivalent linear ODE (see, for example Riccati equation ).

  9. Harmonic balance - Wikipedia

    en.wikipedia.org/wiki/Harmonic_balance

    Harmonic balance is a method used to calculate the steady-state response of nonlinear differential equations, [1] and is mostly applied to nonlinear electrical circuits. [2] [3] [4] It is a frequency domain method for calculating the steady state, as opposed to the various time-domain steady-state methods. The name "harmonic balance" is ...