Search results
Results from the WOW.Com Content Network
Stoma in a tomato leaf shown via colorized scanning electron microscope image A stoma in horizontal cross section The underside of a leaf. In this species (Tradescantia zebrina) the guard cells of the stomata are green because they contain chlorophyll while the epidermal cells are chlorophyll-free and contain red pigments.
A hydathode is a type of pore, commonly found in vascular plants, [1] that secretes water through pores in the epidermis or leaf margin, typically at the tip of a marginal tooth or serration. Hydathodes occur in the leaves of submerged aquatic plants such as Ranunculus fluitans [ 2 ] as well as herbaceous plants of drier habitats such as ...
A lenticel is a porous tissue consisting of cells with large intercellular spaces in the periderm of the secondarily thickened organs and the bark of woody stems and roots of gymnosperms and dicotyledonous flowering plants. [2] It functions as a pore, providing a pathway for the direct exchange of gases between the internal tissues and ...
SV channels have been shown to function as cation channels that are permeable to Ca 2+ ions, [35] but their exact functions are not yet known in plants. [39] Guard cells control gas exchange and ion exchange through opening and closing. K+ is one ion that flows both into and out of the cell, causing a positive charge to develop.
Most plants have an epidermis that is a single cell layer thick. Some plants like Ficus elastica and Peperomia, which have a periclinal cellular division within the protoderm of the leaves, have an epidermis with multiple cell layers. Epidermal cells are tightly linked to each other and provide mechanical strength and protection to the plant.
The gating of an aquaporin is carried out by an interaction between a gating mechanism and the aquaporin, which causes a 3D change in the protein so that it blocks the pore and, thus, disallows the flow of water through the pore. In plants, there are at least two forms of aquaporin gating: gating by the dephosphorylation of certain serine ...
In plant anatomy, there are two main types of sieve elements. Companion cells and sieve cells originate from meristems, which are tissues that actively divide throughout a plant's lifetime. They are similar to the development of xylem, a water conducting tissue in plants whose main function is also transportation in the plant vascular system. [1]
The fossil record shows three different types of tracheid cells found in early plants, which were classified as S-type, G-type and P-type. The first two of them were lignified and had pores to facilitate the transportation of water between cells. The P-type tracheid cells had pits similar to extant plant tracheids.