enow.com Web Search

  1. Ads

    related to: how to calculate probability

Search results

  1. Results from the WOW.Com Content Network
  2. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] A simple example is the tossing of a fair (unbiased) coin. Since the ...

  3. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    A discrete probability distribution is applicable to the scenarios where the set of possible outcomes is discrete (e.g. a coin toss, a roll of a die) and the probabilities are encoded by a discrete list of the probabilities of the outcomes; in this case the discrete probability distribution is known as probability mass function.

  4. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    This probability is given by the integral of this variable's PDF over that range—that is, it is given by the area under the density function but above the horizontal axis and between the lowest and greatest values of the range. The probability density function is nonnegative everywhere, and the area under the entire curve is equal to 1.

  5. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    The book extended the concept of expectation by adding rules for how to calculate expectations in more complicated situations than the original problem (e.g., for three or more players), and can be seen as the first successful attempt at laying down the foundations of the theory of probability. In the foreword to his treatise, Huygens wrote:

  6. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.

  7. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    Let be a discrete random variable with probability mass function depending on a parameter .Then the function = = (=),considered as a function of , is the likelihood function, given the outcome of the random variable .

  8. Probability measure - Wikipedia

    en.wikipedia.org/wiki/Probability_measure

    A probability measure mapping the σ-algebra for events to the unit interval. The requirements for a set function μ {\displaystyle \mu } to be a probability measure on a σ-algebra are that: μ {\displaystyle \mu } must return results in the unit interval [ 0 , 1 ] , {\displaystyle [0,1],} returning 0 {\displaystyle 0} for the empty set and 1 ...

  9. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1 − p).

  1. Ads

    related to: how to calculate probability