Search results
Results from the WOW.Com Content Network
For the null hypothesis to be rejected, an observed result has to be statistically significant, i.e. the observed p-value is less than the pre-specified significance level . To determine whether a result is statistically significant, a researcher calculates a p -value, which is the probability of observing an effect of the same magnitude or ...
In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.
This means that the p-value is a statement about the relation of the data to that hypothesis. [2] The 0.05 significance level is merely a convention. [3] [5] The 0.05 significance level (alpha level) is often used as the boundary between a statistically significant and a statistically non-significant p-value. However, this does not imply that ...
In broad usage, the "practical clinical significance" answers the question, how effective is the intervention or treatment, or how much change does the treatment cause. In terms of testing clinical treatments, practical significance optimally yields quantified information about the importance of a finding, using metrics such as effect size, number needed to treat (NNT), and preventive fraction ...
In standard cases this will be a well-known result. For example, the test statistic might follow a Student's t distribution with known degrees of freedom, or a normal distribution with known mean and variance. Select a significance level (α), the maximum acceptable false positive rate. Common values are 5% and 1%.
Although this p-value objectified research outcome, using it as a rigid cut off point can have potentially serious consequences: (i) clinically important differences observed in studies might be statistically non-significant (a type II error, or false negative result) and therefore be unfairly ignored; this often is a result of having a small ...
If the resulting p-value of Levene's test is less than some significance level (typically 0.05), the obtained differences in sample variances are unlikely to have occurred based on random sampling from a population with equal variances. Thus, the null hypothesis of equal variances is rejected and it is concluded that there is a difference ...
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]