Search results
Results from the WOW.Com Content Network
Contributing structures of the carbonate ion. In chemistry, resonance, also called mesomerism, is a way of describing bonding in certain molecules or polyatomic ions by the combination of several contributing structures (or forms, [1] also variously known as resonance structures or canonical structures) into a resonance hybrid (or hybrid structure) in valence bond theory.
Clar's rule states that for a benzenoid polycyclic aromatic hydrocarbon (i.e. one with only hexagonal rings), the resonance structure with the largest number of disjoint aromatic π-sextets is the most important to characterize its chemical and physical properties. Such a resonance structure is called a Clar structure. In other words, a ...
In chemistry, the mesomeric effect (or resonance effect) is a property of substituents or functional groups in a chemical compound.It is defined as the polarity produced in the molecule by the interaction of two pi bonds or between a pi bond and lone pair of electrons present on an adjacent atom. [1]
When formal charges are necessary, resonance structures that have negative charges on the more electronegative elements and positive charges on the less electronegative elements are favored. Single bonds can also be moved in the same way to create resonance structures for hypervalent molecules such as sulfur hexafluoride, which is the correct ...
Formal charges in ozone and the nitrate anion. In chemistry, a formal charge (F.C. or q*), in the covalent view of chemical bonding, is the hypothetical charge assigned to an atom in a molecule, assuming that electrons in all chemical bonds are shared equally between atoms, regardless of relative electronegativity.
The negative charge that is left after deprotonation of the carboxyl group is delocalized between the two electronegative oxygen atoms in a resonance structure. If the R group is an electron-withdrawing group (such as –CF 3 ), the basicity of the carboxylate will be further weakened.
[1] [3] Once NRT has generated a set of density operators, Γ α, for localized resonance structures, α, a least-squares variational functional is employed to quantify the resonance weights of each structure. [1] It does this by measuring the variational error, δ w, of the linear combination of resonance structures to the true density ...
All feature three contiguous sp²-hybridized carbon centers and all derive stability from resonance. [6] Each species can be presented by two resonance structures with the charge or unpaired electron distributed at both 1,3 positions. Resonance structure of the allyl anion. The cation is identical, but carries an opposite-sign charge. [7]