Search results
Results from the WOW.Com Content Network
The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy , it usually applies to planets or asteroids orbiting the Sun , moons orbiting planets, exoplanets orbiting other stars , or binary stars .
In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars (inertial space).
To find this approximation, Newton developed an infinite series that can be viewed as the forerunner of the Taylor expansion. [14] This approximation allowed Newton to estimate the rate of precession for arbitrary central forces. Newton applied this approximation to test models of the force causing the apsidal precession of the Moon's orbit.
This false assumption relies on incorrect Aristotelian physics that an object needs to be pushed to maintain motion. The propelling force from the Sun is inversely proportional to the distance from the Sun. Kepler reasoned this, believing that gravity spreading in three dimensions would be a waste, since the planets inhabited a plane.
An animation showing a low eccentricity orbit (near-circle, in red), and a high eccentricity orbit (ellipse, in purple). In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object [1] such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such ...
Viewed from the same location, a star seen at one position in the sky will be seen at the same position on another night at the same time of day (or night), if the day is defined as a sidereal day (also known as the sidereal rotation period). This is similar to how the time kept by a sundial can be used to find the location of the Sun.
The ancient Greek astronomer Hipparchus noted the apsidal precession of the Moon's orbit (as the revolution of the Moon's apogee with a period of approximately 8.85 years); [4] it is corrected for in the Antikythera Mechanism (circa 80 BCE) (with the supposed value of 8.88 years per full cycle, correct to within 0.34% of current measurements). [5]
Kepler's 3rd law of planetary motion states, the square of the periodic time is proportional to the cube of the mean distance, [4] or , where a is the semi-major axis or mean distance, and P is the orbital period as above.