Ad
related to: geometric series simplification problemseducation.com has been visited by 100K+ users in the past month
This site is a teacher's paradise! - The Bender Bunch
- Educational Songs
Explore catchy, kid-friendly tunes
to get your kids excited to learn.
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Activities & Crafts
Stay creative & active with indoor
& outdoor activities for kids.
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Educational Songs
Search results
Results from the WOW.Com Content Network
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.
This is a particular case of the sum of the reciprocals of any geometric series where the first term and the common ratio are positive integers. If the first term is a and the common ratio is r then the sum is r / a (r − 1) . The Kempner series is the sum of the reciprocals of all positive integers not containing the digit "9" in base 10.
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [ 1 ] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences . [ 2 ]
Today, a more standard phrasing of Archimedes' proposition is that the partial sums of the series 1 + 1 / 4 + 1 / 16 + ⋯ are: + + + + = +. This form can be proved by multiplying both sides by 1 − 1 / 4 and observing that all but the first and the last of the terms on the left-hand side of the equation cancel in pairs.
Why isn't this article called "geometric sequence" but "geometric progression"? I don't find it clear what is meant with progression.--Abdull 13:43, 19 Jun 2005 (UTC) a sequence means that the terms are just followed on after the other. a series means that every term is summed to the next. a prograssion just means that the numbers progress, keep going, withut specifyin if the terms are added ...
Given a series a 0 + a 1 + a 2 + · · ·, one forms a new series a 0 + a 1 x + a 2 x 2 + · · ·. If the latter series converges for 0 < x < 1 to a function with a limit as x tends to 1, then this limit is called the Abel sum of the original series, after Abel's theorem which guarantees that the procedure is consistent with ordinary summation ...
Ad
related to: geometric series simplification problemseducation.com has been visited by 100K+ users in the past month
This site is a teacher's paradise! - The Bender Bunch