enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bioenergetic systems - Wikipedia

    en.wikipedia.org/wiki/Bioenergetic_systems

    This system cannot be relied on for extended periods of time. The lactic acid system, like the ATP-CP system, is important primarily because it provides a rapid supply of ATP energy. For example, exercises that are performed at maximum rates for between 1 and 3 minutes depend heavily upon the lactic acid system. [1]

  3. Physiology of marathons - Wikipedia

    en.wikipedia.org/wiki/Physiology_of_marathons

    This rapid rate of ATP production is essential at the onset of exercise. The amount of creatine phosphate and ATP stored in the muscle is small, readily available, and used quickly due these two factors. Weight lifting or running sprints are examples of exercises that use this energy pathway.

  4. Phosphagen - Wikipedia

    en.wikipedia.org/wiki/Phosphagen

    The Phosphagen System occurs in the cytosol (a gel-like substance) of the sarcoplasm of skeletal muscle, and in the myocyte's cytosolic compartment of the cytoplasm of cardiac and smooth muscle. [2] Creatine kinase reaction. During muscle contraction: H 2 O + ATP → H + + ADP + P i (Mg 2+ assisted, utilization of ATP for Muscle contraction by ...

  5. Adenosine triphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_triphosphate

    Interactive animation of the structure of ATP. Adenosine triphosphate (ATP) is a nucleoside triphosphate [2] that provides energy to drive and support many processes in living cells, such as muscle contraction, nerve impulse propagation, and chemical synthesis.

  6. Phosphocreatine - Wikipedia

    en.wikipedia.org/wiki/Phosphocreatine

    This process is an important component of all vertebrates' bioenergetic systems. For instance, while the human body only produces 250 g of ATP daily, it recycles its entire body weight in ATP each day through creatine phosphate. Phosphocreatine can be broken down into creatinine, which is then excreted in the urine. A 70 kg man contains around ...

  7. ATPase - Wikipedia

    en.wikipedia.org/wiki/ATPase

    Adenosine triphosphate Adenosine diphosphate Adenosine monophosphate. ATPases (EC 3.6.1.3, Adenosine 5'-TriPhosphatase, adenylpyrophosphatase, ATP monophosphatase, triphosphatase, SV40 T-antigen, ATP hydrolase, complex V (mitochondrial electron transport), (Ca 2+ + Mg 2+)-ATPase, HCO 3 −-ATPase, adenosine triphosphatase) are a class of enzymes that catalyze the decomposition of ATP into ADP ...

  8. Anaerobic glycolysis - Wikipedia

    en.wikipedia.org/wiki/Anaerobic_glycolysis

    The anaerobic glycolysis (lactic acid) system is dominant from about 10–30 seconds during a maximal effort. It produces 2 ATP molecules per glucose molecule, [3] or about 5% of glucose's energy potential (38 ATP molecules). [4] [5] The speed at which ATP is produced is about 100 times that of oxidative phosphorylation. [1]

  9. Pyruvate carboxylase - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_carboxylase

    The reaction it catalyzes is: pyruvate + HCO − 3 + ATP → oxaloacetate + ADP + P. It is an important anaplerotic reaction that creates oxaloacetate from pyruvate. PC contains a biotin prosthetic group [1] and is typically localized to the mitochondria in eukaryotes with exceptions to some fungal species such as Aspergillus nidulans which have a cytosolic PC.