Search results
Results from the WOW.Com Content Network
A relation can be both symmetric and antisymmetric (in this case, it must be coreflexive), and there are relations which are neither symmetric nor antisymmetric (for example, the "preys on" relation on biological species). Antisymmetry is different from asymmetry: a relation is asymmetric if and only if it is antisymmetric and irreflexive.
Symmetric and antisymmetric relations. By definition, a nonempty relation cannot be both symmetric and asymmetric (where if a is related to b, then b cannot be related to a (in the same way)). However, a relation can be neither symmetric nor asymmetric, which is the case for "is less than or equal to" and "preys on").
For example, the restriction of < from the reals to the integers is still asymmetric, and the converse or dual > of < is also asymmetric. An asymmetric relation need not have the connex property . For example, the strict subset relation ⊊ {\displaystyle \,\subsetneq \,} is asymmetric, and neither of the sets { 1 , 2 } {\displaystyle \{1,2 ...
A skew-symmetric graph may equivalently be defined as the double covering graph of a polar graph or switch graph, [1] which is an undirected graph in which the edges incident to each vertex are partitioned into two subsets. Each vertex of the polar graph corresponds to two vertices of the skew-symmetric graph, and each edge of the polar graph ...
For example, ≥ is an antisymmetric relation; so is >, but vacuously (the condition in the definition is always false). [11] Asymmetric for all x, y ∈ X, if xRy then not yRx. A relation is asymmetric if and only if it is both antisymmetric and irreflexive. [12] For example, > is an asymmetric relation, but ≥ is not.
A relation is asymmetric if and only if it is both antisymmetric and irreflexive. [9] For example, > is an asymmetric relation, but ≥ is not. Again, the previous 3 alternatives are far from being exhaustive; as an example over the natural numbers, the relation xRy defined by x > 2 is neither symmetric nor antisymmetric, let alone asymmetric ...
If a tensor changes sign under exchange of each pair of its indices, then the tensor is completely (or totally) antisymmetric. A completely antisymmetric covariant tensor field of order k {\displaystyle k} may be referred to as a differential k {\displaystyle k} -form , and a completely antisymmetric contravariant tensor field may be referred ...
Note that if n 1 and n 2 are the same, the antisymmetric expression gives zero, which cannot be a state vector since it cannot be normalized. In other words, more than one identical particle cannot occupy an antisymmetric state (one antisymmetric state can be occupied only by one particle).