Search results
Results from the WOW.Com Content Network
In abstract algebra, the direct sum is a construction which combines several modules into a new, larger module. The direct sum of modules is the smallest module which contains the given modules as submodules with no "unnecessary" constraints, making it an example of a coproduct. Contrast with the direct product, which is the dual notion.
A decomposition with local endomorphism rings [5] (cf. #Azumaya's theorem): a direct sum of modules whose endomorphism rings are local rings (a ring is local if for each element x, either x or 1 − x is a unit). Serial decomposition: a direct sum of uniserial modules (a module is uniserial if the lattice of submodules is a finite chain [6]).
Hence when n = 1, R is an R-module, where the scalar multiplication is just ring multiplication. The case n = 0 yields the trivial R-module {0} consisting only of its identity element. Modules of this type are called free and if R has invariant basis number (e.g. any commutative ring or field) the number n is then the rank of the free module.
A direct sum of modules is a module that is the direct sum of the underlying abelian group together with component-wise scalar multiplication. dual module The dual module of a module M over a commutative ring R is the module Hom R ( M , R ) {\displaystyle \operatorname {Hom} _{R}(M,R)} .
An element in the direct product is an infinite sequence, such as (1,2,3,...) but in the direct sum, there is a requirement that all but finitely many coordinates be zero, so the sequence (1,2,3,...) would be an element of the direct product but not of the direct sum, while (1,2,0,0,0,...) would be an element of both.
An R-module M is semi-simple if every R-submodule of M is an R-module direct summand of M (the trivial module 0 is semi-simple, but not simple). For an R-module M, M is semi-simple if and only if it is the direct sum of simple modules (the
Every finitely-generated R-module is a direct sum of these. Note that this is simple if and only if n = 1 (or p = 0); for example, the cyclic group of order 4, Z/4, is indecomposable but not simple – it has the subgroup 2Z/4 of order 2, but this does not have a complement. Over the integers Z, modules are abelian groups.
Being uniserial is preserved for quotients of rings and modules, but never for products. A direct summand of a serial module is not necessarily serial, as was proved by Puninski, but direct summands of finite direct sums of uniserial modules are serial modules. [2] It has been verified that Jacobson's conjecture holds in Noetherian serial rings ...