Search results
Results from the WOW.Com Content Network
The parity bit may be used within another constituent code. In an example using the DVB-S2 rate 2/3 code the encoded block size is 64800 symbols (N=64800) with 43200 data bits (K=43200) and 21600 parity bits (M=21600). Each constituent code (check node) encodes 16 data bits except for the first parity bit which encodes 8 data bits.
Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]
Long code; Low-density parity-check code, also known as Gallager code, as the archetype for sparse graph codes; LT code, which is a near-optimal rateless erasure correcting code (Fountain code) m of n codes; Nordstrom-Robinson code, used in Geometry and Group Theory [31] Online code, a near-optimal rateless erasure correcting code; Polar code ...
Convolutional codes are processed on a bit-by-bit basis. They are particularly suitable for implementation in hardware, and the Viterbi decoder allows optimal decoding. Block codes are processed on a block-by-block basis. Early examples of block codes are repetition codes, Hamming codes and multidimensional parity-check codes.
A multidimensional parity-check code (MDPC) is a type of error-correcting code that generalizes two-dimensional parity checks to higher dimensions. It was developed as an extension of simple parity check methods used in magnetic recording systems and radiation-hardened memory designs. [1]
For linear block codes, the subcode nodes denote rows of the parity-check matrix H. The digit nodes represent the columns of the matrix H. The digit nodes represent the columns of the matrix H. An edge connects a subcode node to a digit node if a nonzero entry exists in the intersection of the corresponding row and column.
Check digits and parity bits are special cases of checksums, appropriate for small blocks of data (such as Social Security numbers, bank account numbers, computer words, single bytes, etc.). Some error-correcting codes are based on special checksums which not only detect common errors but also allow the original data to be recovered in certain ...
There are many different erasure coding schemes. The most popular erasure codes are Reed-Solomon coding, Low-density parity-check code (LDPC codes), and Turbo codes. [1] As of 2023, modern data storage systems can be designed to tolerate the complete failure of a few disks without data loss, using one of 3 approaches: [2] [3] [4] Replication; RAID