enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conditional probability - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability

    In this situation, the event A can be analyzed by a conditional probability with respect to B. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B) [2] or occasionally P B (A).

  3. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.

  4. Bayes' theorem - Wikipedia

    en.wikipedia.org/wiki/Bayes'_theorem

    Independently of Bayes, Pierre-Simon Laplace used conditional probability to formulate the relation of an updated posterior probability from a prior probability, given evidence. He reproduced and extended Bayes's results in 1774, apparently unaware of Bayes's work, in 1774, and summarized his results in Théorie analytique des probabilités (1812).

  5. Conditional probability distribution - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability...

    Given , the Radon-Nikodym theorem implies that there is [3] a -measurable random variable ():, called the conditional probability, such that () = for every , and such a random variable is uniquely defined up to sets of probability zero. A conditional probability is called regular if ⁡ () is a probability measure on (,) for all a.e.

  6. Conditioning (probability) - Wikipedia

    en.wikipedia.org/wiki/Conditioning_(probability)

    Conditional probabilities, conditional expectations, and conditional probability distributions are treated on three levels: discrete probabilities, probability density functions, and measure theory. Conditioning leads to a non-random result if the condition is completely specified; otherwise, if the condition is left random, the result of ...

  7. Bayes error rate - Wikipedia

    en.wikipedia.org/wiki/Bayes_error_rate

    where is the instance, [] the expectation value, is a class into which an instance is classified, (|) is the conditional probability of label for instance , and () is the 0–1 loss function: L ( x , y ) = 1 − δ x , y = { 0 if x = y 1 if x ≠ y {\displaystyle L(x,y)=1-\delta _{x,y}={\begin{cases}0&{\text{if }}x=y\\1&{\text{if }}x\neq y\end ...

  8. Method of conditional probabilities - Wikipedia

    en.wikipedia.org/wiki/Method_of_conditional...

    For example, consider the task with coin flipping, but extended to n flips for large n. In the ideal case, given a partial state (a node in the tree), the conditional probability of failure (the label on the node) can be efficiently and exactly computed. (The example above is like this.)

  9. Regular conditional probability - Wikipedia

    en.wikipedia.org/.../Regular_conditional_probability

    In probability theory, regular conditional probability is a concept that formalizes the notion of conditioning on the outcome of a random variable. The resulting conditional probability distribution is a parametrized family of probability measures called a Markov kernel .