enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photosystem I - Wikipedia

    en.wikipedia.org/wiki/Photosystem_I

    A phylloquinone, sometimes called vitamin K 1, [16] is the next early electron acceptor in PSI. It oxidizes A 1 in order to receive the electron and in turn is re-oxidized by F x, from which the electron is passed to F b and F a. [16] [17] The reduction of F x appears to be the rate-limiting step. [15]

  3. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    NADH dehydrogenase → plastoquinol → b 6 f → cyt c 6 → cyt aa 3 → O 2. where the mobile electron carriers are plastoquinol and cytochrome c 6, while the proton pumps are NADH dehydrogenase, cyt b 6 f and cytochrome aa 3 (member of the COX3 family). Cyanobacteria are the only bacteria that produce oxygen during photosynthesis.

  4. Biosensor - Wikipedia

    en.wikipedia.org/wiki/Biosensor

    The main reasons for the common use of enzymes in biosensors are: 1) ability to catalyze a large number of reactions; 2) potential to detect a group of analytes (substrates, products, inhibitors, and modulators of the catalytic activity); and 3) suitability with several different transduction methods for detecting the analyte.

  5. P680 - Wikipedia

    en.wikipedia.org/wiki/P680

    P680 + is the strongest biological oxidizing agent known, with an estimated redox potential of ~1.3 V. [3] This makes it possible to oxidize water during oxygenic photosynthesis. P680 + recovers its lost electron by oxidizing water via the oxygen-evolving complex , which regenerates P680.

  6. Photosynthetic reaction centre - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_reaction_centre

    Reaction centers are present in all green plants, algae, and many bacteria.A variety in light-harvesting complexes exist across the photosynthetic species. Green plants and algae have two different types of reaction centers that are part of larger supercomplexes known as P700 in Photosystem I and P680 in Photosystem II.

  7. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    The energy of P680 + is used in two steps to split a water molecule into 2H + + 1/2 O 2 + 2e-(photolysis or light-splitting). An electron from the water molecule reduces P680 + back to P680, while the H + and oxygen are released.

  8. Calvin cycle - Wikipedia

    en.wikipedia.org/wiki/Calvin_cycle

    Calvin cycle step 1 (black circles represent carbon atoms) Calvin cycle steps 2 and 3 combined. The enzyme RuBisCO catalyses the carboxylation of ribulose-1,5-bisphosphate, RuBP, a 5-carbon compound, by carbon dioxide (a total of 6 carbons) in a two-step reaction. [6] The product of the first step is enediol-enzyme complex that can capture CO 2 ...

  9. Chemiosmosis - Wikipedia

    en.wikipedia.org/wiki/Chemiosmosis

    Peter D. Mitchell proposed the chemiosmotic hypothesis in 1961. [1] In brief, the hypothesis was that most adenosine triphosphate (ATP) synthesis in respiring cells comes from the electrochemical gradient across the inner membranes of mitochondria by using the energy of NADH and FADH 2 formed during the oxidative breakdown of energy-rich molecules such as glucose.