Search results
Results from the WOW.Com Content Network
[nb 1] Earth's orbital speed averages 29.78 km/s (19 mi/s; 107,208 km/h; 66,616 mph), which is fast enough to cover the planet's diameter in 7 minutes and the distance to the Moon in 4 hours. [3] The point towards which the Earth in its solar orbit is directed at any given instant is known as the "apex of the Earth's way". [4] [5]
which is slightly faster than Earth's average orbital speed of 29,800 m/s (67,000 mph), as expected from Kepler's 2nd Law. Tangential velocities at altitude
The orbital speed of Earth averages about 29.78 km/s (107,200 km/h; 66,600 mph), which is fast enough to travel a distance equal to Earth's diameter, about 12,742 km (7,918 mi), in seven minutes, and the distance from Earth to the Moon, 384,400 km (238,900 mi), in about 3.5 hours.
A view from the International Space Station in a low Earth orbit (LEO) at about 400 km (250 mi), with yellow-green airglow visible at Earth's horizon, where roughly at an altitude of 100 km (62 mi) the boundary between Earth and outer space lies and flying speeds reach orbital velocities. A low Earth orbit (LEO) is an orbit around Earth with a ...
To escape the Solar System from a location at a distance from the Sun equal to the distance Sun–Earth, but not close to the Earth, requires around 42 km/s velocity, but there will be "partial credit" for the Earth's orbital velocity for spacecraft launched from Earth, if their further acceleration (due to the propulsion system) carries them ...
The energy required to reach Earth orbital velocity at an altitude of 600 km (370 mi) is about 36 MJ/kg, which is six times the energy needed merely to climb to the corresponding altitude. [ 4 ] Spacecraft with a perigee below about 2,000 km (1,200 mi) are subject to drag from the Earth's atmosphere, [ 5 ] which decreases the orbital altitude.
For Earth this means a period of just under 12 hours at an altitude of approximately 20,200 km (12,544.2 miles) if the orbit is circular. [16] Molniya orbit: A semi-synchronous variation of a Tundra orbit. For Earth this means an orbital period of just under 12 hours.
Neither the linear speed nor the angular speed of the planet in the orbit is constant, but the area speed (closely linked historically with the concept of angular momentum) is constant. The eccentricity of the orbit of the Earth makes the time from the March equinox to the September equinox , around 186 days, unequal to the time from the ...